scholarly journals Heterogeneous Differential Evolution for Numerical Optimization

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Wenjun Wang ◽  
Zhihua Cui ◽  
Hui Sun ◽  
Shahryar Rahnamayan

Differential evolution (DE) is a population-based stochastic search algorithm which has shown a good performance in solving many benchmarks and real-world optimization problems. Individuals in the standard DE, and most of its modifications, exhibit the same search characteristics because of the use of the same DE scheme. This paper proposes a simple and effective heterogeneous DE (HDE) to balance exploration and exploitation. In HDE, individuals are allowed to follow different search behaviors randomly selected from a DE scheme pool. Experiments are conducted on a comprehensive set of benchmark functions, including classical problems and shifted large-scale problems. The results show that heterogeneous DE achieves promising performance on a majority of the test problems.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaobing Yu ◽  
Jie Cao ◽  
Haiyan Shan ◽  
Li Zhu ◽  
Jun Guo

Particle swarm optimization (PSO) and differential evolution (DE) are both efficient and powerful population-based stochastic search techniques for solving optimization problems, which have been widely applied in many scientific and engineering fields. Unfortunately, both of them can easily fly into local optima and lack the ability of jumping out of local optima. A novel adaptive hybrid algorithm based on PSO and DE (HPSO-DE) is formulated by developing a balanced parameter between PSO and DE. Adaptive mutation is carried out on current population when the population clusters around local optima. The HPSO-DE enjoys the advantages of PSO and DE and maintains diversity of the population. Compared with PSO, DE, and their variants, the performance of HPSO-DE is competitive. The balanced parameter sensitivity is discussed in detail.


2014 ◽  
Vol 19 (4) ◽  
pp. 469-490 ◽  
Author(s):  
Hamid Esmaeili ◽  
Morteza Kimiaei

In this study, we propose a trust-region-based procedure to solve unconstrained optimization problems that take advantage of the nonmonotone technique to introduce an efficient adaptive radius strategy. In our approach, the adaptive technique leads to decreasing the total number of iterations, while utilizing the structure of nonmonotone formula helps us to handle large-scale problems. The new algorithm preserves the global convergence and has quadratic convergence under suitable conditions. Preliminary numerical experiments on standard test problems indicate the efficiency and robustness of the proposed approach for solving unconstrained optimization problems.


2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


2002 ◽  
Vol 11 (04) ◽  
pp. 531-552 ◽  
Author(s):  
H. A. ABBASS ◽  
R. SARKER

The use of evolutionary algorithms (EAs) to solve problems with multiple objectives (known as Vector Optimization Problems (VOPs)) has attracted much attention recently. Being population based approaches, EAs offer a means to find a group of pareto-optimal solutions in a single run. Differential Evolution (DE) is an EA that was developed to handle optimization problems over continuous domains. The objective of this paper is to introduce a novel Pareto Differential Evolution (PDE) algorithm to solve VOPs. The solutions provided by the proposed algorithm for five standard test problems, is competitive to nine known evolutionary multiobjective algorithms for solving VOPs.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Rashida Adeeb Khanum ◽  
Muhammad Asif Jan ◽  
Nasser Mansoor Tairan ◽  
Wali Khan Mashwani

Differential evolution (DE) is an effective and efficient heuristic for global optimization problems. However, it faces difficulty in exploiting the local region around the approximate solution. To handle this issue, local search (LS) techniques could be hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential evolution with optional external archive (JADE) with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS) for solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE), sequential DE enhanced by neighborhood search for large-scale global optimization (SDENS), and differential ant-stigmergy algorithm (DASA). These comparisons reveal that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.


2004 ◽  
Vol 21 (02) ◽  
pp. 225-240 ◽  
Author(s):  
RUHUL SARKER ◽  
HUSSEIN A. ABBASS

The use of evolutionary strategies (ESs) to solve problems with multiple objectives [known as vector optimization problems (VOPs)] has attracted much attention recently. Being population-based approaches, ESs offer a means to find a set of Pareto-optimal solutions in a single run. Differential evolution (DE) is an ES that was developed to handle optimization problems over continuous domains. The objective of this paper is to introduce a novel Pareto-frontier differential evolution (PDE) algorithm to solve VOPs. The solutions provided by the proposed algorithm for two standard test problems, outperform the "strength Pareto evolutionary algorithm", one of the state-of-the-art evolutionary algorithm for solving VOPs.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 36
Author(s):  
Norrlaili Shapiee ◽  
Mohd Rivaie ◽  
Mustafa Mamat ◽  
Puspa Liza Ghazali

Conjugate gradient (CG) methods are famous for their utilization in solving unconstrained optimization problems, particularly for large scale problems and have become more intriguing such as in engineering field. In this paper, we propose a new family of CG coefficient and apply in regression analysis. The global convergence is established by using exact and inexact line search. Numerical results are presented based on the number of iterations and CPU time. The findings show that our method is more efficient in comparison to some of the previous CG methods for a given standard test problems and successfully solve the real life problem.  


Author(s):  
Efrén Juárez-Castillo ◽  
Nancy Pérez-Castro ◽  
Efrén Mezura-Montes

Differential Evolution (DE) is a population-based Evolutionary Algorithm (EA) for solving optimization problems over continuous spaces. Many optimization problems are constrained and have a bounded search space from which some vectors leave when the mutation operator of DE is applied. Therefore, it is necessary the use of a boundary constraint-handling method (BCHM) in order to repair the invalid mutant vectors. This paper presents a generalized and improved version of the Centroid BCHM in order to keep the search within the valid ranges of decision variables in constrained numerical optimization problems (CNOPs), which has been tested on a robust and comprehensive set of experiments that include a variant of DE specialized in dealing with CNOPs. This new version, named Centroid [Formula: see text], relocates the mutant vector in the centroid formed by K random vectors and one vector taken from the population that is within or near the feasible region. The results show that this new version has a major impact on the algorithm’s performance, and it is able to promote better final results through the improvement of both, the approach to the feasible region and the ability to generate better solutions.


2013 ◽  
Vol 4 (3) ◽  
pp. 1-14 ◽  
Author(s):  
Iyad Abu Doush ◽  
Faisal Alkhateeb ◽  
Eslam Al Maghayreh ◽  
Mohammed Azmi Al-Betar ◽  
Basima Hani F. Hasan

Harmony search algorithm (HSA) is a recent evolutionary algorithm used to solve several optimization problems. The algorithm mimics the improvisation behaviour of a group of musicians to find a good harmony. Several variations of HSA have been proposed to enhance its performance. In this paper, a new variation of HSA that uses multi-parent crossover is proposed (HSA-MPC). In this technique three harmonies are used to generate three new harmonies that will replace the worst three solution vectors in the harmony memory (HM). The algorithm has been applied to solve a set of eight real world numerical optimization problems (1-8) introduced for IEEE-CEC2011 evolutionary algorithm competition. The experimental results of the proposed algorithm are compared with the original HSA, and two variations of HSA: global best HSA and tournament HSA. The HSA-MPC almost always shows superiority on all test problems.


Sign in / Sign up

Export Citation Format

Share Document