Neighborhood, Locating Dominating and Almost Locating Dominating Set of a Ladder Graph

Author(s):  
Lalita Lamani ◽  
Yogalakshmi S
Keyword(s):  
2019 ◽  
Vol 53 (5) ◽  
pp. 1721-1728
Author(s):  
Ayse Besirik ◽  
Elgin Kilic

The stability of a communication network has a great importance in network design. There are several vulnerability measures used to determine the resistance of network to the disruption in this sense. Domination theory provides a model to measure the vulnerability of a graph network. A new vulnerability measure of domination integrity was introduced by Sundareswaran in his Ph.D. thesis (Parameters of vulnerability in graphs (2010)) and defined as DI(G) = min{|S| + m(G − S):S ∈ V(G)} where m(G − S) denotes the order of a largest component of graph G − S and S is a dominating set of G. The domination integrity of an undirected connected graph is such a measure that works on the whole graph and also the remaining components of graph after any break down. Here we determine the domination integrity of wheel graph W1,n, Ladder graph Ln, Sm,n, Friendship graph Fn, Thorn graph of Pn and Cn which are commonly used graph models in network design.


Let G be a simple graph with vertex set V(G) and edge set E(G). A set S of vertices in a graph 𝑮(𝑽,𝑬) is called a total dominating set if every vertex 𝒗 ∈ 𝑽 is adjacent to an element of S. The minimum cardinality of a total dominating set of G is called the total domination number of G which is denoted by 𝜸𝒕 (𝑮). The energy of the graph is defined as the sum of the absolute values of the eigen values of the adjacency matrix. In this paper, we computed minimum total dominating energy of a Friendship Graph, Ladder Graph and Helm graph. The Minimum total dominating energy for bistar graphand sun graph is also determined.


In a graph G = (V, E) each vertex is said to dominate every vertex in its closed neighborhood. In a graph G, if S is a subset of V then S is a double dominating set of G if every vertex in V is dominated by at least two vertices in S. The smallest cardinality of a double dominating set is called the double domination number γx2 (G). [4]. In this paper, we computed some relations between double domination number, domination number, number of vertices (n) and maximum degree (∆) of Helm graph, Friendship graph, Ladder graph, Circular Ladder graph, Barbell graph, Gear graph and Firecracker graph.


2014 ◽  
Vol 36 (9) ◽  
pp. 1868-1879
Author(s):  
Wei-Zhong LUO ◽  
Qi-Long FENG ◽  
Jian-Xin WANG ◽  
Jian-Er CHEN

2014 ◽  
Vol 36 (6) ◽  
pp. 1246-1253
Author(s):  
Feng LI ◽  
Hai-Xing ZHAO ◽  
Zong-Ben XU
Keyword(s):  

2020 ◽  
Author(s):  
Lorelyn P. Gomez ◽  
Enrico L. Enriquez
Keyword(s):  

2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


Sign in / Sign up

Export Citation Format

Share Document