Design Optimization and Aerodynamic Performance Analysis of a Small Wind Turbine Blade

Author(s):  
Robin Johny K ◽  
◽  
David Solomon ◽  
Suresh Kumar C

This article predominantly focuses on the performance estimation of a small wind turbine blade when a dimple arrangement is made along its upper surface. The dimple arrangement is grooved at two locations: 0.25c and 0.5c, where c is the chord length of the turbine blade. A CFD analysis using the k-ε turbulence model is carried out on the selected blade sections NREL S823 and S822. The continuity and momentum equations are solved using ANSYS Fluent Solver to assess the aerodynamic performance of the proposed design. The effect of introducing a dimple on the blade surface has shown to delay the flow separation, with the formation of vortices. Further, the overall performance of the blade is simulated using GH BLADED and the results acquired are discussed.


Author(s):  
D H Didane ◽  
S Mohd ◽  
Z Subari ◽  
N Rosly ◽  
M F Abdul Ghafir ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2320 ◽  
Author(s):  
Kyoungboo Yang

For a wind turbine to extract as much energy as possible from the wind, blade geometry optimization to maximize the aerodynamic performance is important. Blade design optimization includes linearizing the blade chord and twist distribution for practical manufacturing. As blade linearization changes the blade geometry, it also affects the aerodynamic performance and load characteristics of the wind turbine rotor. Therefore, it is necessary to understand the effects of the design parameters used in linearization. In this study, the effects of these parameters on the aerodynamic performance of a wind turbine blade were examined. In addition, an optimization algorithm for linearization and an objective function that applies multiple tip speed ratios to optimize the aerodynamic efficiency were developed. The analysis revealed that increasing the chord length and chord profile slope improves the aerodynamic efficiency at low wind speeds but lowers it at high wind speeds, and that the twist profile mainly affects the behaviour at low wind speeds, while its effect on the aerodynamic performance at high wind speeds is not significant. When the blade geometry was optimized by applying the linearization parameter ranges obtained from the analysis, blade geometry with improved aerodynamic efficiency at all wind speeds below the rated wind speed was derived.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document