scholarly journals Anodic Stripping Voltammetric Methods for Determination of Brexpiprazole and its Elec-Trochemical Oxidation Behavior in Pure Form and Pharmaceutical Preparations

2020 ◽  
Vol 22 (2) ◽  
pp. 91-97
Author(s):  
Fathy Salama ◽  
Khalid Attia ◽  
Manal El-Shal ◽  
Ragab Said ◽  
Ahmed El-Olemy ◽  
...  
1997 ◽  
Vol 30 (15) ◽  
pp. 2743-2753 ◽  
Author(s):  
M. S. Rizk ◽  
Y M Issa ◽  
A F Shoukry ◽  
E M Atia

2021 ◽  
Vol 58 (6) ◽  
pp. 427-434
Author(s):  
Muhammad Naeem Khan ◽  
Irum ◽  
Saba Gul ◽  
Muslima ◽  
Muhammad Mursaleen

Abstract A rapid, simple and economical spectrofluorimetric method for the determination of diclofenac potassium in pure form, in pharmaceutical preparations and in human plasma has been developed. The method is based on the enhancement of the fluorescence signal of diclofenac potassium by the addition of sodium dodecyl sulphate in McIvaine buffer with a pH of 5. Different experimental conditions such as buffer type, pH, type and concentration of surfactants were investigated. The fluorescence intensity of the solution was recorded at 361 nm after excitation at 243 nm. The method shows linearity in the concentration range of 0.2 μg mL–1–10 μg mL–1 with a good correlation coefficient of 0.997. The relative standard deviation value was 3.62 (n = 7). The limit of detection and limit of quantification were calculated to be 2.84 × 10–3 μg mL–1 and 9.47 × 10–3 μg mL-1, respectively. The effect of excipients and co-administrated drugs was investigated and no interference was observed. The method was successfully applied for the determination of diclofenac potassium in pure form, in pharmaceutical products and in human plasma. The percentage recoveries obtained ranged from 100.25% to 102.16% for pure form and 97.50% to 102.00% for pharmaceutical products and from 98.50% to 101.67% for human plasma.


Author(s):  
MALAK Y. AL BATHISH ◽  
AZZA A. GAZY ◽  
MARWA K. EL JAMAL

Objective: To develop and validate new, selective spectrophotometric colorimetric analytical methods for the quantification of methimazole in its pure form and in its pharmaceutical preparations. Methods: Method A is based on the oxidation of methimazole with potassium permanganate in alkaline medium, the manganate ion produced was measured at λmax= 610 nm. Method B is a kinetic determination of methimazole using fixed-time method based on the oxidation of methimazole using known excess of cerium (IV) nitrate in acidic medium and assessing the unreacted Ce (IV) by adding a fixed amount of methyl orange and measuring the absorbance of the resultant solution at λmax=507 nm which is equivalent to the unreacted methyl orange. The reaction conditions and analytical parameters are investigated and optimized. Method validation was carried out according to ICH guidelines in terms of linearity, LOD, LOQ, precision, and accuracy. Results: Beer’s law is obeyed in the range of 1.50–15.00 μg/ml for method A and 0.25–3.00 μg/ml for method B. The developed methods were subjected to the detailed validation procedure. The proposed spectrophotometric methods were applied for the determination of the methimazole in its pure form and in its pharmaceutical formulation. The percentage recoveries were found to be 100.82 % and 99.85 % in the pharmaceutical formulation for the two proposed methods, respectively. Conclusion: Both developed spectrophotometric methods, considered as green analytical chemistry, were found to be novel, highly selective and can be applied for the quality control of methimazole in its pure form and in its pharmaceutical formulation based on the simplicity, applicability of the parameters, accessibility of the reagents employed and reasonably low time of analysis.


Sign in / Sign up

Export Citation Format

Share Document