METHOD FOR DETERMINING THE MISALIGNMENT OF OPTICAL-ELECTRONIC AND INERTIAL ORIENTATIONS HELICOPTER SYSTEMS

Author(s):  
V. M. Lisitsyn ◽  
G. G. Sebryakov ◽  
K. V. Obrosov ◽  
V. A. Safonov

A unique method for determining the misalignment of the orientation of the instrumental coordinate systems of different posts of the optical-electronic system of a helicopter with each other and with an inertial navigation system is proposed. The method does not require preflight preparation, and is based on processing video information streams generated by thermal imaging and television channels of the optical-electronic system, and using information from an inertial navigation system. The method involves the helicopter performing a special maneuver, which is a rotation of the helicopter at a low altitude. This maneuver can be automated. When the helicopter rotates, trajectories of characteristic points of the underlying surface and airfield infrastructure are formed on the images. In general, the trajectories of these points are hyperbolas, which are approximated by straight lines. The parameters of these straight lines are determined using the least squares method. The angle of inclination of straight lines in the screen coordinate system determines the position of the angular velocity vector in the instrument coordinate systems. Since all the posts of the optical-electronic system measure the same vector, it is possible to determine their mismatch in roll between themselves and with the inertial navigation system. Preliminary modeling showed high potentialities of the proposed method. The method can be considered as an integral part of a more general method for coordinating coordinate systems in roll, pitch and course based on processing video streams of optical-electronic systems. When the method is used in real conditions, the errors in estimating the angular misalignment of the optical-electronic and inertial systems of a helicopter can be in units of arc minutes.

2020 ◽  
Vol 10 (19) ◽  
pp. 6707
Author(s):  
Supeng Li ◽  
Defu Cheng ◽  
Quanming Gao ◽  
Yi Wang ◽  
Liangguang Yue ◽  
...  

In order to calibrate the misalignment error of a triaxial magnetometer and an inertial navigation system in a three-component magnetic survey system, an improved method with easy realization is proposed in this paper. We establish the misalignment error model based on Euler’s theorem. We transform the calibration of misalignment error into estimating calibration parameters to minimize the value of objective function. Then, the nonlinear least squares method is used to estimate the calibration parameters. In the simulation experiment, the deviation between the value and the preset value is within 1 nT. In the field experiment, the fluctuation value of the x, y, and z components reduce to 1.09%, 0.92%, and 1.28%, respectively. The absolute deviation values are reduced to 0.72%, 0.70%, and 0.81% and the standard deviation value are reduced to 0.74%, 0.71%, 0.86%, respectively. The proposed method has advantages of high operability and precision as compared with existing methods.


2020 ◽  
Vol 75 (4) ◽  
pp. 336-341
Author(s):  
A. V. Rzhevskiy ◽  
O. V. Snigirev ◽  
Yu. V. Maslennikov ◽  
V. Yu. Slobodchikov

Sign in / Sign up

Export Citation Format

Share Document