Reliability - Based Determination of the Coefficients of Lateral Earth Pressure on Retaining Walls Subjected to Seismic Loading

2015 ◽  
Vol 9 (4) ◽  
pp. 421-434
Author(s):  
Mohammed Shukri Al-Zoubi ◽  
Author(s):  
Xiaodong Zhao ◽  
Guoqing Zhou ◽  
Bo Wang ◽  
Wei Jiao ◽  
Jing Yu

Artificial frozen soils (AFS) have been used widely as temporary retaining walls in strata with soft and water-saturated soil deposits. After excavations, frozen soils thaw, and the lateral earth pressure penetrates through the soils subjected to freeze–thaw, and acts on man-made facilities. Therefore, it is important to investigate the lateral pressure (coefficient) responses of soils subjected to freeze–thaw to perform structure calculations and stability assessments of man-made facilities. A cubical testing apparatus was developed, and tests were performed on susceptible soils under conditions of freezing to a stable thermal gradient and then thawing with a uniform temperature (Fnonuni–Tuni). The experimental results indicated a lack of notable anisotropy for the maximum lateral preconsolidated pressures induced by the specimen’s compaction and freeze–thaw. However, the freeze–thaw led to a decrement of lateral earth pressure coefficient  K0, and  K0 decrement under the horizontal Fnonuni–Tuni was greater than that under the vertical Fnonuni–Tuni. The measured  K0 for normally consolidated and over-consolidated soil specimens exhibited anisotropic characteristics under the vertical Fnonuni–Tuni and horizontal Fnonuni–Tuni treatments. The anisotropies of  K0 under the horizontal Fnonuni–Tuni were greater than that under the vertical Fnonuni–Tuni, and the anisotropies were more noticeable in the unloading path than that in the loading path. These observations have potential significances to the economical and practical design of permanent retaining walls in soft and water-saturated soil deposits.


2021 ◽  
Vol 137 ◽  
pp. 104302
Author(s):  
Seyed Mohamad Mirmoazen ◽  
Seyed Hamid Lajevardi ◽  
Seyed Mohammad Mirhosseini ◽  
Meghdad Payan ◽  
Reza Jamshidi Chenari

2016 ◽  
Vol 21 (5) ◽  
pp. 1706-1716 ◽  
Author(s):  
Amin Keshavarz ◽  
Mohsen Ebrahimi

2020 ◽  
Vol 17 (4) ◽  
pp. 481-489
Author(s):  
Seyyed Pouya Alavinezhad ◽  
Hadi Shahir

Purpose The purpose of this study is to present a diagram for the lateral earth pressure of c–φ soils exerted on anchored walls in presence of surcharge. Design/methodology/approach To this end, two-dimensional plane strain modeling of anchored wall was carried out in Plaxis software. To validate the numerical model, two excavations with different specifications were simulated and the model results were compared with the available results. Subsequently, a parametric analysis was done and based on its results, a diagram was proposed for the lateral earth pressure of c–φ soils including the surcharge effects. Findings The proposed diagram without the surcharge and cohesion effects is a trapezoidal with zero value at the ground surface that is linearly approaching the apparent earth pressure of sand according to Terzaghi and Peck (1967) at 0.1H (H: wall height). The surcharge and cohesion effects at the ground level is 4 Ka*q and 0, respectively, and below 0.1H, they are treated as the same way for lateral earth pressure of a retaining wall. It should be emphasized that the apparent pressure diagram for design does not resemble the real distribution of earth pressure against the wall and it is for calculating the values of the anchors loads. Originality/value The available diagrams to determine the earth pressure exerted on the anchored walls are related to sandy or clayey soils and do not take the presence of surcharge into account. Thus, the proposed diagram is quite original and different from the previous ones.


Sign in / Sign up

Export Citation Format

Share Document