Certain errors in experimental determination of earth pressure on models of retaining walls

1968 ◽  
Vol 2 (4) ◽  
pp. 333-339 ◽  
Author(s):  
G. E. Lazebnik ◽  
E. I. Chernysheva
1982 ◽  
Vol 19 (3) ◽  
pp. 213-224 ◽  
Author(s):  
W. F. Anderson ◽  
T. H. Hanna ◽  
D. A. Ponniah ◽  
S. A. Shah

Laboratory-scale tests simulating field construction procedures have been carried out to examine the behaviour of the soil–wall–anchor system when a rigid retaining wall, restrained by anchors, supports a sand backfill on which there is surface loading. Two main series of tests have been carried out, one with a uniform load applied over the whole backfill surface, and the other with a strip load applied parallel to the wall and at a varying distance from it. In both series of tests the intensity of loading was varied, and in the series with uniform loading on the backfill the effects of varying anchor inclination were studied. During all stages of construction wall movements, earth pressures, anchor loads, wall base reaction, and backfill surface subsidence were monitored. Although a conservative approach was used in the determination of the anchor loads, wall movements, and consequently backfill subsidence, were considerable. Similar movements at full scale could lead to settlement damage in a structure founded on a shallow mat or strip footings on a backfill, so tentative suggestions are made for more conservative earth pressure distribution assumptions for design purposes for the two cases studied.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zuofei Yan ◽  
Yahong Deng ◽  
Jia He ◽  
You Xuan ◽  
Wei Wu

Reasonable determination of the magnitude and distribution of dynamic earth pressure is one of the major challenges in the seismic design of retaining walls. Based on the principles of pseudodynamic method, the present study assumed that the critical rupture surface of backfill soil was a composite curved surface which was in combination with a logarithmic spiral and straight line. The equations for the calculation of seismic total active thrusts on retaining walls were derived using limit equilibrium theory, and earth pressure distribution was obtained by differentiating total active thrusts. The effects of initial phase, amplification factor, and soil friction angle on the distribution of seismic active earth pressure have also been discussed. Compared to pseudostatic and pseudodynamic methods for the determination of planar failure surface forms, the proposed method receives a bit lower value of seismic active earth pressures.


2015 ◽  
Vol 52 (4) ◽  
pp. 175-180 ◽  
Author(s):  
A. M. Karaulov ◽  
K. V. Korolev

1999 ◽  
Vol 96 (6) ◽  
pp. 1111-1116 ◽  
Author(s):  
E. Falcon ◽  
S. Fauve ◽  
C. Laroche

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-709-C7-710
Author(s):  
J. Moity

Sign in / Sign up

Export Citation Format

Share Document