scholarly journals Parallel Global Optimization Algorithm for Obtaining Uniform Convergence When Simultaneously Solving a Set of Global Optimization Problems

2011 ◽  
Vol 07 (03) ◽  
pp. 363-381 ◽  
Author(s):  
MILLIE PANT ◽  
RADHA THANGARAJ ◽  
AJITH ABRAHAM

This paper presents a simple, hybrid two phase global optimization algorithm called DE-PSO for solving global optimization problems. DE-PSO consists of alternating phases of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The algorithm is designed so as to preserve the strengths of both the algorithms. Empirical results show that the proposed DE-PSO is quite competent for solving the considered test functions as well as real life problems.


Nanophotonics ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 1059-1069 ◽  
Author(s):  
Jiaqi Jiang ◽  
Jonathan A. Fan

AbstractMetasurfaces are subwavelength-structured artificial media that can shape and localize electromagnetic waves in unique ways. The inverse design of these devices is a non-convex optimization problem in a high dimensional space, making global optimization a major challenge. We present a new type of population-based global optimization algorithm for metasurfaces that is enabled by the training of a generative neural network. The loss function used for backpropagation depends on the generated pattern layouts, their efficiencies, and efficiency gradients, which are calculated by the adjoint variables method using forward and adjoint electromagnetic simulations. We observe that the distribution of devices generated by the network continuously shifts towards high performance design space regions over the course of optimization. Upon training completion, the best generated devices have efficiencies comparable to or exceeding the best devices designed using standard topology optimization. Our proposed global optimization algorithm can generally apply to other gradient-based optimization problems in optics, mechanics, and electronics.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2013 ◽  
Vol 310 ◽  
pp. 609-613
Author(s):  
Ioana D. Balea ◽  
Radu Hulea ◽  
Georgios E. Stavroulakis

This paper presents an implementation of Eurocode load cases for discrete global optimization algorithm for planar structures based on the principles of finite element methods and genetic algorithms. The final optimal design is obtained using IPE sections chosen as feasible by the algorithm, from the available steel sections from industry. The algorithm is tested on an asymmetric planar steel frame with promising results.


Sign in / Sign up

Export Citation Format

Share Document