scholarly journals Cluster-based Access Control Mechanism for Cellular D2D Communication Networks with Dense Device Deployment

Author(s):  
Thanh-Dat Do ◽  
Ngoc-Tan Nguyen ◽  
Thi-Huong-Giang Dang ◽  
Nam-Hoang Nguyen ◽  
Minh-Trien Pham

Device-to-Device (D2D) communications is expected to be a key technology of the forthcoming mobile communication networks because of its benefits in terms of spectral efficiency, energy efficiency, and system capacity. To mitigate frequency collisions as well as reduce the effects of co-channel interference between user's connections, we propose an interference-aware coordinated access control (IaCAC) mechanism for heterogeneous cellular D2D communication networks with dense device deployment of user equipment (UEs). In the proposed network setting, we consider the co-existence of both macro base stations (MBSs) and smallcell base stations (SBSs). In the proposed IaCAC mechanism, MBSs and SBSs are coordinated to perform access control to their UEs while MBSs allocate bandwidth parts dynamically to SBSs based on the interference levels measured at SBSs. Besides, to reduce D2D-to-cellular interference, device user equipments (DUEs) can perform power control autonomously. Simulation results show that the proposed IaCAC can provide higher system throughput and user throughput than those achieved by the network-assisted device-decided scheme proposed in [21]. Moreover, simulation results also reveal that the proposed IaCAC also significantly improve SINR of MUE’s and SUE’s uplink connections.


2013 ◽  
Vol 385-386 ◽  
pp. 1705-1707
Author(s):  
Tzer Long Chen ◽  
Yu Fang Chung ◽  
Jian Mao Hong ◽  
Jeng Hong Jhong ◽  
Chin Sheng Chen ◽  
...  

It is important to notice that the access control mechanism has been widely applied in various areas, such as on-line video systems, wireless network, and electronic documents. We propose an access control mechanism which is constructed based on two mathematical fundamentals: Lagrange interpolation and ElGamal algorithm. We conduct performance analysis to compare the efficiency of our proposed scheme with that of several related published schemes in both key generation phase and key derivation phase. Our new scheme is proven to be more efficient. It is shown, as expected, a more efficient scheme provides relatively less security and a more secure scheme is relatively less efficient for private keys of the same size.


Sign in / Sign up

Export Citation Format

Share Document