A Convolutional Neural Network based Feature Extractor with Discriminant Feature Score for Effective Medical Image Classification

2020 ◽  
Vol 18 (7) ◽  
pp. 01-08
Author(s):  
Banupriya R ◽  
Dr.A. Rajiv Kannan
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Samir S. Yadav ◽  
Shivajirao M. Jadhav

AbstractMedical image classification plays an essential role in clinical treatment and teaching tasks. However, the traditional method has reached its ceiling on performance. Moreover, by using them, much time and effort need to be spent on extracting and selecting classification features. The deep neural network is an emerging machine learning method that has proven its potential for different classification tasks. Notably, the convolutional neural network dominates with the best results on varying image classification tasks. However, medical image datasets are hard to collect because it needs a lot of professional expertise to label them. Therefore, this paper researches how to apply the convolutional neural network (CNN) based algorithm on a chest X-ray dataset to classify pneumonia. Three techniques are evaluated through experiments. These are linear support vector machine classifier with local rotation and orientation free features, transfer learning on two convolutional neural network models: Visual Geometry Group i.e., VGG16 and InceptionV3, and a capsule network training from scratch. Data augmentation is a data preprocessing method applied to all three methods. The results of the experiments show that data augmentation generally is an effective way for all three algorithms to improve performance. Also, Transfer learning is a more useful classification method on a small dataset compared to a support vector machine with oriented fast and rotated binary (ORB) robust independent elementary features and capsule network. In transfer learning, retraining specific features on a new target dataset is essential to improve performance. And, the second important factor is a proper network complexity that matches the scale of the dataset.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
ZhiFei Lai ◽  
HuiFang Deng

Medical image classification is a key technique of Computer-Aided Diagnosis (CAD) systems. Traditional methods rely mainly on the shape, color, and/or texture features as well as their combinations, most of which are problem-specific and have shown to be complementary in medical images, which leads to a system that lacks the ability to make representations of high-level problem domain concepts and that has poor model generalization ability. Recent deep learning methods provide an effective way to construct an end-to-end model that can compute final classification labels with the raw pixels of medical images. However, due to the high resolution of the medical images and the small dataset size, deep learning models suffer from high computational costs and limitations in the model layers and channels. To solve these problems, in this paper, we propose a deep learning model that integrates Coding Network with Multilayer Perceptron (CNMP), which combines high-level features that are extracted from a deep convolutional neural network and some selected traditional features. The construction of the proposed model includes the following steps. First, we train a deep convolutional neural network as a coding network in a supervised manner, and the result is that it can code the raw pixels of medical images into feature vectors that represent high-level concepts for classification. Second, we extract a set of selected traditional features based on background knowledge of medical images. Finally, we design an efficient model that is based on neural networks to fuse the different feature groups obtained in the first and second step. We evaluate the proposed approach on two benchmark medical image datasets: HIS2828 and ISIC2017. We achieve an overall classification accuracy of 90.1% and 90.2%, respectively, which are higher than the current successful methods.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Feng-Ping An

Due to the complexity of medical images, traditional medical image classification methods have been unable to meet actual application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving medical image classification tasks. However, deep learning has the following problems in medical image classification. First, it is impossible to construct a deep learning model hierarchy for medical image properties; second, the network initialization weights of deep learning models are not well optimized. Therefore, this paper starts from the perspective of network optimization and improves the nonlinear modeling ability of the network through optimization methods. A new network weight initialization method is proposed, which alleviates the problem that existing deep learning model initialization is limited by the type of the nonlinear unit adopted and increases the potential of the neural network to handle different visual tasks. Moreover, through an in-depth study of the multicolumn convolutional neural network framework, this paper finds that the number of features and the convolution kernel size at different levels of the convolutional neural network are different. In contrast, the proposed method can construct different convolutional neural network models that adapt better to the characteristics of the medical images of interest and thus can better train the resulting heterogeneous multicolumn convolutional neural networks. Finally, using the adaptive sliding window fusion mechanism proposed in this paper, both methods jointly complete the classification task of medical images. Based on the above ideas, this paper proposes a medical classification algorithm based on a weight initialization/sliding window fusion for multilevel convolutional neural networks. The methods proposed in this study were applied to breast mass, brain tumor tissue, and medical image database classification experiments. The results show that the proposed method not only achieves a higher average accuracy than that of traditional machine learning and other deep learning methods but also is more stable and more robust.


Sign in / Sign up

Export Citation Format

Share Document