scholarly journals Speech Scrambling based on Particle Swarm Optimisation

Webology ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 70-82
Author(s):  
Zeina Hassan Razaq

Securing any communication system where important data may be transmitted through the channel is a very crucial issue. One of the good solutions in providing security for the speech is to use speech scrambling techniques. The chaotic system used in security has properties that make it a good choice for scrambling speech signal and the optimisation algorithm can provide a perfect performance when used to enhance the hybrid of more than one method. In this paper, we suggest a system that uses an optimisation method, namely, particle swarm optimisation. The evaluation measures prove that the output of the optimisation method has better performance among the methods used in the comparison, including chaotic maps and hybrid chaotic maps.

Author(s):  
Ahmad K. Al Hwaitat ◽  
Rizik M. H. Al-Sayyed ◽  
Imad K. M. Salah ◽  
Saher Manaseer ◽  
Hamed S. Al-Bdour ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 542-548
Author(s):  
Wenlong Tang ◽  
Hao Cha ◽  
Min Wei ◽  
Bin Tian ◽  
Xichuang Ren

Abstract This paper proposes a new refractivity profile estimation method based on the use of AIS signal power and quantum-behaved particle swarm optimization (QPSO) algorithm to solve the inverse problem. Automatic identification system (AIS) is a maritime navigation safety communication system that operates in the very high frequency mobile band and was developed primarily for collision avoidance. Since AIS is a one-way communication system which does not need to consider the target echo signal, it can estimate the atmospheric refractivity profile more accurately. Estimating atmospheric refractivity profiles from AIS signal power is a complex nonlinear optimization problem, the QPSO algorithm is adopted to search for the optimal solution from various refractivity parameters, and the inversion results are compared with those of the particle swarm optimization algorithm to validate the superiority of the QPSO algorithm. In order to test the anti-noise ability of the QPSO algorithm, the synthetic AIS signal power with different Gaussian noise levels is utilized to invert the surface-based duct. Simulation results indicate that the QPSO algorithm can invert the surface-based duct using AIS signal power accurately, which verify the feasibility of the new atmospheric refractivity estimation method based on the automatic identification system.


Sign in / Sign up

Export Citation Format

Share Document