scholarly journals Atmospheric refractivity estimation from AIS signal power using the quantum-behaved particle swarm optimization algorithm

2019 ◽  
Vol 11 (1) ◽  
pp. 542-548
Author(s):  
Wenlong Tang ◽  
Hao Cha ◽  
Min Wei ◽  
Bin Tian ◽  
Xichuang Ren

Abstract This paper proposes a new refractivity profile estimation method based on the use of AIS signal power and quantum-behaved particle swarm optimization (QPSO) algorithm to solve the inverse problem. Automatic identification system (AIS) is a maritime navigation safety communication system that operates in the very high frequency mobile band and was developed primarily for collision avoidance. Since AIS is a one-way communication system which does not need to consider the target echo signal, it can estimate the atmospheric refractivity profile more accurately. Estimating atmospheric refractivity profiles from AIS signal power is a complex nonlinear optimization problem, the QPSO algorithm is adopted to search for the optimal solution from various refractivity parameters, and the inversion results are compared with those of the particle swarm optimization algorithm to validate the superiority of the QPSO algorithm. In order to test the anti-noise ability of the QPSO algorithm, the synthetic AIS signal power with different Gaussian noise levels is utilized to invert the surface-based duct. Simulation results indicate that the QPSO algorithm can invert the surface-based duct using AIS signal power accurately, which verify the feasibility of the new atmospheric refractivity estimation method based on the automatic identification system.

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774801 ◽  
Author(s):  
Jianwei Ren ◽  
Chunhua Chen ◽  
Hao Xu ◽  
Qingqing Zhao

In a pallet pool, pallets would be delivered through a supply chain. The operation procedure that consists of at least five operation processes as distribution, reposition, recycling, purchase (or rent), and maintenance is quite complex. These pallets are likely to be damaged, lost, destroyed, and so on. So, it is necessary to monitor the pallets using radio-frequency identification technology. However, there is no literature on the management of a pallet pool with both radio-frequency identification–tagged pallets and non-tagged pallets being put into consideration. In our research, an optimization model is presented to manage such a pallet pool. The objective of the optimization model is to minimize the total operation cost of a pallet pool including distribution cost, reposition cost, recycling cost, purchase or rent cost, loss cost, maintenance cost, loading and unloading cost, storage cost, and punishment cost. A particle swarm optimization algorithm is developed in Microsoft Visual Basic. Our numerical example shows that the optimization model and particle swarm optimization algorithm are effective. It is proved that the model and algorithm also can be used to measure whether the investment of a radio-frequency identification system is valuable or not. We proposed some suggestions for the pallet pools management.


Sign in / Sign up

Export Citation Format

Share Document