scholarly journals The effect of alertness and attention on the modulation of the beta rhythm to tactile stimulation

2021 ◽  
Vol 9 (12) ◽  
Author(s):  
Mia Illman ◽  
Kristina Laaksonen ◽  
Mia Liljeström ◽  
Harri Piitulainen ◽  
Nina Forss
Author(s):  
Galina Portnova ◽  
Irina Girzhova ◽  
Daria Filatova ◽  
Vitaliy Podlepich ◽  
Alina Tetereva ◽  
...  

This study reports a correlation between EEG and structural brain changes in patients after severe traumatic brain injury in a coma. The novelty of our approach was based on the combination of structural visualization (MRI) and functional neuroimaging (EEG) during tactile stimulation. The structural morphometry indicated a decrease of whole-brain cortical thickness, the gray-matter volume of the cortex, and subcortical structures in comatose patients compared to healthy subjects. In resting-state EEG, coma patients had significantly higher power of the slow-wave activity of 2-6 Hz and significantly less power of the alpha and beta rhythm. Importantly, coma patients showed a significant decrease of theta-rhythm power in tactile stimulation compared to the resting state, and this EEG pattern was not found in the control group. The decrease of the theta-rhythm power significantly correlated with the better outcome from a coma. Spectral changes in EEG in response to tactile stimuli showed no association with brain morphometric measures in healthy controls. In patients, decreasing theta-rhythm power correlated positively with the volume of whole-brain gray matter, right putamen, and insula; and negatively with the volume of damaged brain tissue. Increasing beta-rhythm power, specific tactile EEG response for a healthy brain, correlated with the cortical thickness of the somatosensory Paracentral and Precentral area. The observed decrease of gray-matter volume indicates brain atrophy in coma patients, which could be associated with neurodegeneration induced by injury. Our results also demonstrate that slow-wave desynchronization, as a nonspecific response to tactile stimulation, can serve as a sensitive index of morphometric changes after brain injury and coma outcome.


Author(s):  
Fatemeh ayoobi ◽  
Parvin khalili ◽  
Hossein azin ◽  
Shohreh Shahrokhabadi ◽  
Mahdieh azin

2018 ◽  
Vol 6 ◽  
Author(s):  
Sophie J. E. Cramer ◽  
Janneke Dekker ◽  
Jenny Dankelman ◽  
Steffen C. Pauws ◽  
Stuart B. Hooper ◽  
...  

Author(s):  
Katherine McGhee ◽  
Emily Kidney ◽  
Kaelah Pou ◽  
Heather Pruyn Bouley ◽  
Stacey Reynolds
Keyword(s):  

1982 ◽  
Vol 47 (5) ◽  
pp. 885-908 ◽  
Author(s):  
R. Gillette ◽  
M. P. Kovac ◽  
W. J. Davis

1. A population of interneurons that control feeding behavior in the mollusk Pleurobranchaea has been analyzed by dye injection and intracellular stimulation/recording in whole animals and reduced preparations. The population consists of 12-16 somata distributed in two bilaterally symmetrical groups on the anterior edge of the cerebropleural ganglion (brain). On the basis of their position adjacent to the cerebral lobes, these cells have been named paracerebral neurons (PCNs). This study concerns pme subset pf [MCs. the large, phasic ones, which have the strongest effect on the feeding rhythm (21). 2. Each PCN sends a descending axon via the ipsilateral cerebrobuccal connective to the buccal ganglion. Axon branches have not been detected in other brain or buccal nerves and hence the PCNs appear to be interneurons. 3. In whole-animal preparations, tonic intracellular depolarization of the PNCs causes them to discharge cyclic bursts of action potentials interrupted by a characteristic hyperpolarization. In all specimens that exhibit feeding behavior, the interburst hyperpolarization is invariably accompanied by radula closure and the beginning of proboscis retraction (the "bite"). No other behavorial effect of PCN stimulation has been observed. 4. In whole-animal preparations, the PCNs are excited by food and tactile stimulation of the oral veil, rhinophores, and tentacles. When such stimuli induce feeding the PCNs discharge in the same bursting pattern seen during tonic PCN depolarization, with the cyclic interburst hyperpolarization phase locked to the bit. When specimens egest an unpalatable object by cyclic buccal movements, however, the PCNs are silent. The PCNs therefore exhibit properties expected of behaviorally specific "command" neurons for feeding. 5. Silencing one or two PCNs by hyperpolarization may weaken but does not prevent feeding induced by natural food stimuli. Single PCNs therefore can be sufficient but are not necessary to induction of feeding behavior. Instead the PCNs presumably operate as a population to control feeding. 6. In isolated nervous system preparations tonic extracellular stimulation of the stomatogastric nerve of the buccal ganglion elicits a cyclic motor rhythm that is similar in general features to the PNC-induced motor rhythm. Bursts of PCN action potentials intercalated at the normal phase position in this cycle intensify the buccal rhythm. Bursts of PCN impulses intercalated at abnormal phase positions reset the buccal rhythm. The PCNs, therefore, also exhibit properties expected of pattern-generator elements and/or coordinating neurons for the buccal rhythm. 7. The PCNs are recruited into activity when the buccal motor rhythm is elicited by stomatogastric nerve stimulation or stimulation of the reidentifiable ventral white cell. The functional synergy between the PCNs and the buccal rhythm is therefore reciprocal. 8...


2006 ◽  
Vol 105 (4) ◽  
pp. 588-594 ◽  
Author(s):  
Peter T. Lin ◽  
Mitchel S. Berger ◽  
Srikantan S. Nagarajan

Object In this study the role of magnetic source imaging for preoperative motor mapping was evaluated by using a single-dipole localization method to analyze motor field data in 41 patients. Methods Data from affected and unaffected hemispheres were collected in patients performing voluntary finger flexion movements. Somatosensory evoked field (SSEF) data were also obtained using tactile stimulation. Dipole localization using motor field (MF) data was successful in only 49% of patients, whereas localization with movement-evoked field (MEF) data was successful in 66% of patients. When the spatial distribution of MF and MEF dipoles in relation to SSEF dipoles was analyzed, the motor dipoles were not spatially distinct from somatosensory dipoles. Conclusions The findings in this study suggest that single-dipole localization for the analysis of motor data is not sufficiently sensitive and is nonspecific, and thus not clinically useful.


Sign in / Sign up

Export Citation Format

Share Document