matter volume
Recently Published Documents


TOTAL DOCUMENTS

8539
(FIVE YEARS 1712)

H-INDEX

92
(FIVE YEARS 10)

2022 ◽  
Vol 15 ◽  
Author(s):  
Sébastien Celle ◽  
Claire Boutet ◽  
Cédric Annweiler ◽  
Romain Ceresetti ◽  
Vincent Pichot ◽  
...  

Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults.Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition.Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression.Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.


2022 ◽  
Author(s):  
Sidhant Chopra ◽  
Stuart Oldham ◽  
Ashlea Segal ◽  
Alexander Holmes ◽  
Kristina Sabaroedin ◽  
...  

Background: Different regions of the brain's grey matter are connected by a complex structural network of white matter fibres which are responsible for the propagation of action potentials and the transport of trophic and other molecules. In neurodegenerative disease, these connections constrain the way in which grey matter volume loss progresses. Here, we investigated whether connectome architecture also shapes the spatial pattern of longitudinal grey matter volume changes attributable to illness and antipsychotic medication in first episode psychosis (FEP). Methods: We conducted a triple-blind randomised placebo-control MRI study where 62 young adults with first episode psychosis received either an atypical antipsychotic or placebo over 6-months. A healthy control group was also recruited. Anatomical MRI scans were acquired at baseline, 3-months and 12-months. Deformation-based morphometry was used to estimate illness-related and antipsychotic-related grey matter volume changes over time. Representative functional and structural brain connectivity patterns were derived from an independent healthy control group using resting-state functional MRI and diffusion-weighted imaging. We used neighbourhood deformation models to predict the extent of brain change in a given area by the changes observed in areas to which it is either structurally connected or functionally coupled. Results: At baseline, we found that empirical illness-related regional volume differences were strongly correlated with predicted differences using a model constrained by structural connectivity weights (ρ = .541; p < .001). At 3-months and 12-months, we also found a strong correlation between longitudinal regional illness-related (ρ > .516; p < .001) and antipsychotic-related volume change (ρ > .591; p < .001) with volumetric changes in structurally connected areas. These correlations were significantly greater than those observed across various null models accounting for lower-order spatial and network properties of the data. Associations between empirical and predicted volume change estimates were much lower for models that only considered binary structural connectivity (all ρ < .376), or which were constrained by inter-regional functional coupling (all ρ < .436). Finally, we found that potential epicentres of volume change emerged posteriorly early in the illness and shifted to the prefrontal cortex by later illness stages. Conclusion: Psychosis- and antipsychotic-related grey matter volume changes are strongly shaped by anatomical brain connectivity. This result is consistent with findings in other neurological disorders and implies that such connections may constrain pathological processes causing brain dysfunction in FEP.


2022 ◽  
Author(s):  
Fan Nils Yang ◽  
Weizhen Xie ◽  
Ze Wang

Importance: Adolescents nowadays often get insufficient sleep. Yet, the long-term adverse effects of sleep loss on developing brain and behavior remains unknown. Objective: To determine whether insufficient sleep leads to long-lasting impacts on mental health, cognition, and brain development in adolescents across two years. Design: This longitudinal study utilized a public dataset, the Adolescent Brain Cognitive Development (ABCD) study, which is an ongoing study starting from 2016. Setting: Data were collected from 21 research sites in the U.S. Participants: 11,875 9-10-year-olds were recruited using stratified sampling in order to reflect the diversity of the U.S. population. Intervention: Individuals with sufficient versus insufficient sleep (< 9 hours per day for adolescents) were compared after controlling for age (months), sex, race, puberty status, and other 7 covariates based on propensity score matching. Main Outcomes and Measures: Behavior problems, cognition, mental health assessments, resting-state functional connectivity, gray matter volume, cortical area, cortical thickness, and structural connectivity (Fractional anisotropy) were collected and preprocessed by the ABCD study. Independent-sample t-tests and meditation analysis were performed to investigate the effects of insufficient sleep. Results: 3021 matched pairs (50.7% male) were identified based on baseline assessment, with mean (SD) age of 119.5 (7.5) months. In baseline, sufficient sleep is associated less behavioral problems on 18 of 20 assessments, e.g. depress (95% CI of mean difference: -0.28 to -0.47, false discovery rate (FDR)-corrected p < .001, Cohen's d = -0.20), better cognitive performance on 7 of 10 assessments, such as crystal cognition (95% CI: 0.81 to 1.50, FDR-corrected p < .001, Cohen's d = 0.17), better functional connection between cortical regions and basal ganglia (all FDR-corrected p < .05, Cohen's d >0.15), and large structure in ACC and temporal pole (all FDR-corrected p < .05, Cohen's d >0.09). Similar patterns of effect of sufficient sleep were found in FL2 (749 pairs remained) e.g. Cohen's d of function connectivity at baseline was correlated with Cohen's d of that at FL2 (r = 0.54, 95% CI: 0.45 to 0.61, p < 1e-10). Mediation and longitudinal mediation analysis revealed that identified brain measures (e.g. gray matter volume of left temporal pole) at baseline mediated the effect of sufficient sleep on behavioral assessments (e.g. crystal cognition) at baseline and at FL2 (95% CI did not encompass 0, p < 0.05 on 100,000 random-generated bootstrapped samples). Conclusions and Relevance: These results provide strong population-level evidence for the long-lasting detrimental effects of insufficient sleep on mental health, cognition, and brain function and structure in adolescents. The current study identified potential neural mechanisms of adverse effect of insufficient sleep in adolescents, which might provide a theoretical grounding for sleep intervention programs to improve the long-term developmental outcomes in adolescents.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting Su ◽  
Pei-Wen Zhu ◽  
Biao Li ◽  
Wen-Qing Shi ◽  
Qi Lin ◽  
...  

AbstractThis study proposes the use of the voxel-based morphometry (VBM) technique to investigate structural alterations of the cerebral cortex in patients with strabismus and amblyopia (SA). Sixteen patients with SA and sixteen healthy controls (HCs) underwent magnetic resonance imaging. Original whole brain images were analyzed using the VBM method. Pearson correlation analysis was performed to evaluate the relationship between mean gray matter volume (GMV) and clinical manifestations. Receiver operating characteristic (ROC) curve analysis was applied to classify the mean GMV values of the SA group and HCs. Compared with the HCs, GMV values in the SA group showed a significant difference in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, bilateral parahippocampal gyrus, and left anterior cingulate cortex. The mean GMV value in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, and bilateral parahippocampal gyrus were negatively correlated with the angle of strabismus. The ROC curve analysis of each cerebral region confirmed the accuracy of the area under the curve. Patients with SA have reduced GMV values in some brain regions. These findings might help to reveal the potential pathogenesis of SA and its relationship with the atrophy of specific regions of the brain.


2022 ◽  
Vol 12 ◽  
Author(s):  
Haihua Bao ◽  
Xin He ◽  
Fangfang Wang ◽  
Dongjie Kang

Objective: Headache and memory impairment are the primary clinical symptoms of chronic mountain sickness (CMS). In this study, we used voxel-based morphometry (VBM) and the amplitude of the low-frequency fluctuation method (ALFF) based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to identify changes in the brain structure and function caused by CMS.Materials and Methods: T1W anatomical images and a resting-state functional MRI (fMRI) of the whole brain were performed in 24 patients diagnosed with CMS and 25 normal controls matched for age, sex, years of education, and living altitude. MRI images were acquired, followed by VBM and ALFF data analyses.Results: Compared with the control group, the CMS group had increased gray matter volume in the left cerebellum crus II area, left inferior temporal gyrus, right middle temporal gyrus, right insula, right caudate nucleus, and bilateral lentiform nucleus along with decreased gray matter volume in the left middle occipital gyrus and left middle temporal gyrus. White matter was decreased in the bilateral middle temporal gyrus and increased in the right Heschl's gyrus. Resting-state fMRI in patients with CMS showed increased spontaneous brain activity in the left supramarginal gyrus, left parahippocampal gyrus, and left middle temporal gyrus along with decreased spontaneous brain activity in the right cerebellum crus I area and right supplementary motor area.Conclusion: Patients with CMS had differences in gray and white matter volume and abnormal spontaneous brain activity in multiple brain regions compared to the controls. This suggests that long-term chronic hypoxia may induce changes in brain structure and function, resulting in CMS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Nathan J. Kolla ◽  
Areti Smaragdi ◽  
George Gainham ◽  
Karolina A. Karas ◽  
Colin Hawco ◽  
...  

Background: Stop, Now And Plan (SNAP) is a cognitive behavioral-based psychosocial intervention that has a strong evidence base for treating youth with high aggression and externalizing behaviors, many of whom have disruptive behavior disorders. In a pre-post design, we tested whether SNAP could improve externalizing behaviors, assessed by the parent-rated Child Behavior Checklist (CBCL) and also improve behavioral measures of impulsivity in children with high aggression and impulsivity. We then investigated whether any improvement in externalizing behavior or impulsivity was associated with gray matter volume (GMV) changes assessed using structural magnetic resonance imaging (sMRI). We also recruited typically developing youth who were assessed twice without undergoing the SNAP intervention.Methods: Ten children who were participating in SNAP treatment completed the entire study protocol. CBCL measures, behavioral measures of impulsivity, and sMRI scanning was conducted pre-SNAP and then 13 weeks later post-SNAP. Twelve healthy controls also completed the study; they were rated on the CBCL, performed the same behavioral measure of impulsivity, and underwent sMRI twice, separated by 13 weeks. They did not receive the SNAP intervention.Result: At baseline, SNAP participants had higher CBCL scores and performed worse on the impulsivity task compared with the healthy controls. At the second visit, SNAP participants still had higher scores on the CBCL compared with normally-developing controls, but their performance on the impulsivity task had improved to the point where their results were indistinguishable from the healthy controls. Structural magnetic resonance imaging in the SNAP participants further revealed that improvements in impulsivity were associated with GMV changes in the frontotemporal region.Conclusion: These results suggest that SNAP led to improvement in behavioral measures of impulsivity in a cohort of boys with high externalizing behavior. Improvement in impulsivity was also associated with increased GMV changes. The mechanism behind these brain changes is unknown but could relate to cognitive behavioral therapy and contingency management interventions, important components of SNAP, that target frontotemporal brain regions. Clinically, this study offers new evidence for the potential targeting of brain regions by non-invasive modalities, such as repetitive transcranial magnetic stimulation, to improve externalizing behavior and impulsivity.


Author(s):  
Jurate Aleknaviciute ◽  
Tavia E. Evans ◽  
Elif Aribas ◽  
Merel W. de Vries ◽  
Eric A. P. Steegers ◽  
...  

AbstractThe peripartum period is the highest risk interval for the onset or exacerbation of psychiatric illness in women’s lives. Notably, pregnancy and childbirth have been associated with short-term structural and functional changes in the maternal human brain. Yet the long-term effects of pregnancy on maternal brain structure remain unknown. We investigated a large population-based cohort to examine the association between parity and brain structure. In total, 2,835 women (mean age 65.2 years; all free from dementia, stroke, and cortical brain infarcts) from the Rotterdam Study underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Associations of parity with global and lobar brain tissue volumes, white matter microstructure, and markers of vascular brain disease were examined using regression models. We found that parity was associated with a larger global gray matter volume (β = 0.14, 95% CI = 0.09–0.19), a finding that persisted following adjustment for sociodemographic factors. A non-significant dose-dependent relationship was observed between a higher number of childbirths and larger gray matter volume. The gray matter volume association with parity was globally proportional across lobes. No associations were found regarding white matter volume or integrity, nor with markers of cerebral small vessel disease. The current findings suggest that pregnancy and childbirth are associated with robust long-term changes in brain structure involving a larger global gray matter volume that persists for decades. Future studies are warranted to further investigate the mechanism and physiological relevance of these differences in brain morphology.


2022 ◽  
Vol 15 ◽  
Author(s):  
Wangli Cai ◽  
Yujing Zhou ◽  
Lidi Wan ◽  
Ruiling Zhang ◽  
Ting Hua ◽  
...  

Functional constipation, which belongs to the functional gastrointestinal disorder (FGID), is a common disease and significantly impacts daily life. FGID patients have been progressively proven with functional and structural alterations in various brain regions, but whether and how functional constipation affects the brain gray matter volume (GMV) remains unclear; besides, which genes are associated with the GMV changes in functional constipation is largely unknown. On account of the structural MRI image from the 30 functional constipation patients and 30 healthy controls (HCs), GMV analysis showed that functional constipation patients had significantly decreased GMV in the right orbital prefrontal cortex (OFC), left precentral gyrus (PreG), and bilateral thalamus (THA). Correlation analysis showed that the self-rating depressive scale, patient assessment of constipation quality of life (PAC-QOL), and Wexner constipation scores were negatively correlated with GMV of the OFC and negative correlations between PAC-QOL score and GMV of the bilateral THA. Based on the Allen Human Brain Atlas, a cross-sample spatial correlation was conducted and found that 18 genes’ expression values showed robust correlations with GMV changes in functional constipation patients. These outcomes highlight our recognition of the transcriptional features related to GMV changes in functional constipation and could be regarded as candidates to detect biological mechanisms of abnormality in functional constipation patients.


2022 ◽  
Author(s):  
Belinda M Brown ◽  
Jaisalmer de Frutos Lucas ◽  
Tenielle Porter ◽  
Natalie Frost ◽  
Michael Vacher ◽  
...  

Background: Grey matter atrophy occurs as a function of ageing and is accelerated in dementia. Previous research suggests physical activity attenuates grey matter loss; however, there appears to be individual variability in this effect. Understanding factors that can affect the relationship between physical activity and brain volume may enable prediction of individual response, and aid in identifying those that gain the greatest neural benefits from physical activity. The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors. Methods: Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine: 1) the relationship between objectively-measured physical activity and brain volume; and 2) whether the relationship between objectively-measured physical activity and brain volume is moderated by age, sex, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) e4 allele carriage. All participants underwent a magnetic resonance imaging scan to quantify grey matter volumes, physical activity monitoring via accelerometry, and genotyping. Results: Physical activity was associated with total grey matter volume (B = 0.14, p = 0.001, q = 0.005) and right hippocampal volume (B = 1.45, p = 0.008, q = 0.016). The physical activity*sex interaction predicted cortical grey matter (B = 0.22, p = 0.003, q = 0.004), total grey matter (B = 0.30, p < 0.001, q = 0.001), and right hippocampal volume (B = 3.60, p = 0.001, q = 0.002). Post-hoc analyses revealed males received benefit from higher physical activity levels, in terms of greater cortical grey matter volume (B = 0.13, p = 0.01), total grey matter volume (B=0.23, p < 0.001), and right hippocampal volume (B = 3.05, p = 0.008). No moderating effects of age, APOE e4 allele carriage, or BDNF Val66Met genotype were observed. Discussion: Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of sex-effects on the relationship between physical activity and brain volume.


Sign in / Sign up

Export Citation Format

Share Document