scholarly journals Fault detection in a centrifugal pump using vibration and motor current signature analysis

2012 ◽  
Vol 6 (3/4) ◽  
pp. 261 ◽  
Author(s):  
Amiya Ranjan Mohanty ◽  
Prasanta Kumar Pradhan ◽  
Nitaigour P. Mahalik ◽  
Sabyasachi G. Dastidar
Author(s):  
Yin Luo ◽  
Shouqi Yuan ◽  
Jianping Yuan ◽  
Hui Sun

Sensorless monitoring technology based on motor current signature analysis is a nonintrusive and economical technique to monitor motor-driven equipment. Sensorless monitoring technology can be applied to a centrifugal pump system. This technology is also based on the motor current signature of centrifugal pump load; however, systematic research regarding motor current signature in overall normal operation points which is the applied basic for sensorless monitoring technology has been rarely performed. As such, we partially examined the motor current signature of a centrifugal pump load by experimental observation, theoretical analysis, and numerical simulation. Results show that stator current is a sinusoidal alternating current that strictly follows sine law associated with the cycle of the fundamental frequency of supply power. The trend of the root mean square and peak–peak of current is the same as flow–shaft power characteristics; hence, this trend could be used as indicator of the pump operational point monitor. The frequency characteristics of a centrifugal pump, such as blade passing frequency, rotation frequency, and broadband noise, could be reflected as sidebands around the fundamental frequency. The stator current spectrum is composed of fundamental frequency component, harmonics component, and noise. The fundamental frequency component is directly related to the pump load in which changes associated with the law of fundamental frequency component are relatively similar to flow–shaft power characteristics. Harmonics component and noise are caused by load fluctuation in which the amount of energy of these two components exhibits a lower value at the preferred operation point. By contrast, the amount of energy likely increases when pump operation is at an unstable operation point. These results further indicate that motor current signature analysis is a feasible and cost-effective method to monitor centrifugal pump operation status. Therefore, motor current signature analysis can be applied to monitor-related flow phenomena.


2020 ◽  
Vol 10 (21) ◽  
pp. 7550
Author(s):  
Vincent Becker ◽  
Thilo Schwamm ◽  
Sven Urschel ◽  
Jose Alfonso Antonino-Daviu

Pumps have a wide range of applications. Methods for fault detection of motors are increasingly being used for pumps. In the context of this paper, a test bench is built to investigate circulation pumps for faults. As a use case, the fault of impeller clogging was first measured and then examined with the help of motor current signature analysis. It can be seen that there are four frequencies at which there is an increase in amplitude in case of a fault. The sidebands around the supply frequency are in particular focus. The clogging of three and four of a total of seven channels leads to the highest amplitudes at the fault frequencies. The efficiency is reduced by 9 to 15% in case of faulty operation. These results indicate that the implementation of fault detection algorithms on the pump electronics represents added value for the pump operator. Furthermore, the results can be transferred to other applications.


Sign in / Sign up

Export Citation Format

Share Document