test bench
Recently Published Documents


TOTAL DOCUMENTS

2440
(FIVE YEARS 787)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 605
Author(s):  
Thanh-Ha Nguyen ◽  
Tri-Cuong Do ◽  
Kyoung-Kwan Ahn

Nowadays, hydraulic excavators are an indispensable part of the construction industry; however, conventional hydraulic excavators consume a great deal of fossil fuel and release a large amount of pollution emissions into the environment. This causes many unwanted costs, therefore, effective solutions are required to solve the above-mentioned problems. In this paper, a new independent metering system is proposed to improve energy-saving and reduce costs of a conventional system. In detail, a directional valve is used to control movement and three electro-hydraulic poppet valves are integrated to adjust the flow rate at the inlet and outlet ports of the boom cylinder. In addition, a control strategy based on the coordination between the speed of the pump and the opening area of the spool valve is designed to improve the performance of the system. Specifically, the valves are controlled based on the strategy that the meter-in valve is opened fully to reduce throttling losses and that the meter-out valve is controlled to reduce leakage. The speed of the pump is adjusted according to the feedback position signal. To demonstrate the effectiveness of the new configuration, a real test bench of the boom system was built under laboratory conditions. From the experimental results, the new independent metering valve system not only works with a high tracking precision, but it also reduces energy consumption. Compared with a conventional independent metering system, the fuel economy of the proposed structure can achieve a reduction of approximately 6.5%.


Author(s):  
Michael Thiel ◽  
Bernd Tibken

In this paper a mean value model of a turbocharged diesel engine air path with an electric wastegate (WG) and an exhaust throttle valve (ETV) is presented. The model is designed with regard to system analysis, controller design, and real-time feasibility. That means, care is taken to ensure that the model contains the relevant dynamics on the one hand and that the requirements for computing power and memory (RAM) are kept as low as possible on the other hand. New approaches for modeling the ETV and the exhaust gas temperature are presented. The latter is formulated via an artificial neural network (ANN) computed outside the model. The ANN is integrated into the model in such a way that the differentiation of the model still provides meaningful results for controller design. Thus, this model may also be used for online computation of nonlinear model predictive controllers (MPC) or nonlinear state observers. The parameters of the model are determined using GT-Power simulation data covering the entire working range of the engine. Only measured variables that are also accessible on the engine test bench are used. All optimization problems to be solved within the parameter determination are presented. It is analyzed which sensors are suitable to support the model in an implementation on an electronic control unit (ECU), and the effect without and with sensor correction is shown in a dynamic test bench measurement. Furthermore, the properties of the generated C code are presented, which are the number of mathematical operations, the runtimes, and the stack size. An evaluation of the real time capability is given based on eigenvalue analyses and the properties of the C code .


2022 ◽  
pp. 0309524X2110653
Author(s):  
Philippe Giguère ◽  
John R Wagner

A total of 27 test profiles from the IEC 61400-1 design load cases were tested using a 7.5-MW wind turbine drivetrain test bench and two multi-megawatt wind turbine drivetrains. Each test profile consisted of simultaneous vertical, lateral, and longitudinal forces, yawing and nodding bending moment, and rotational speed. These test-bench inputs were compared with the forces, bending moments, and speed that were applied to the wind turbine drivetrains to quantify the test-bench tracking error. This tracking error was quantified for a range of ramp-rate limits of the yawing and nodding bending moments. The experimental results were compared with predictions from an evaluation method for the capability of wind turbine drivetrain test benches to replicate dynamic loads. The method’s predictive capability was found to be sufficient for the goal of early screening and its formulation is applicable to any wind turbine drivetrain test bench and drivetrain design.


Author(s):  
Bahram Hosseini Monjezi ◽  
Benedikt Sapotta ◽  
Sarah Moulai ◽  
Jinju Zhang ◽  
Robert Oestreich ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 366
Author(s):  
Maite Martincorena-Arraiza ◽  
Carlos A. De La Cruz Blas ◽  
Antonio Lopez-Martin ◽  
Cristián Molina Vicuña ◽  
Ignacio R. Matías

A new method to process the vibration signal acquired by an accelerometer placed in a planetary gearbox housing is proposed, which is useful to detect potential faults. The method is based on the phenomenological model and consists of the projection of the healthy vibration signals onto an orthonormal basis. Low pass components representation and Gram–Schmidt’s method are conveniently used to obtain such a basis. Thus, the measured signals can be represented by a set of scalars that provide information on the gear state. If these scalars are within a predefined range, then the gear can be diagnosed as correct; in the opposite case, it will require further evaluation. The method is validated using measured vibration signals obtained from a laboratory test bench.


2022 ◽  
Author(s):  
Mattia Pugliatti ◽  
Vittorio Franzese ◽  
Paolo Panicucci ◽  
Francesco Topputo

2022 ◽  
pp. 207-232
Author(s):  
Kamal Elyaalaoui ◽  
Moussa Labbadi ◽  
Khalid Chigane ◽  
Mohammed Ouassaid ◽  
Mohamed Cherkaoui

The main objective of this chapter is the experimental validation of active and reactive power control at the connection point for a three-phase grid connected inverter. It gives an overview on the adopted vector control strategy, regulation of the angle of orientation of the blades (pitch control), synchronization grid side converter to the power network using phase closed loop (PLL). Once the experimental test bench is described, the authors devote a first part to the design of the block circuit diagram of the experimental platform and the control strategy implemented in the DSPace DS1104, and they suggest some steps to associate the inverter to the electrical network. Subsequently, they discuss the experimental results validating the proposed power control. The purpose of this experimental results is the DSPACE real-time implementation of PQ control using three-phase inverter and development of a startup algorithm of the experimental test bench.


2021 ◽  
Vol 31 (4) ◽  
pp. 500-517
Author(s):  
Pyanzov Sergey V. ◽  
Petr V. Senin ◽  
Pavel A. Ionov ◽  
Aleksey V. Stolyarov ◽  
Alexander M. Zemskov ◽  
...  

Introduction. The article describes the test bench specialized software, developed for technical inspection of domestic and foreign volumetric hydraulic drives in repair enterprises and service centers. The results of bench tests using a hydraulic bench and software are presented. Materials and Methods For the application software development, G graphical programming language of the Laboratory Virtual Instrumentation Engineering Workbench (Lab- View) programming environment developed by the National Instruments Company has been used. The reliability of the results obtained has been confirmed by a series of bench tests of domestic and foreign volumetric hydraulic drives. Results. There has been developed and implemented new test bench software for the technical inspection of hydraulic drives of different models from domestic and foreign manufacturers in repair plants and service centers. The software is used to capture, process and store data from the sensors during testing, to calculate and output measurement data, to conduct nonlaboratory analysis of the testing process in graphical, textual and video formats, to calibrate sensors, and to store the test results in the electronic library system. The specialized software runs under the Microsoft Windows 7 x86 (32-bit) operating system and is installed on a personal computer of the hydraulic bench data processing unit. The developed software is characterized by the ergonomics of the user interface, the ability to control all the parameters of diagnosing the tested volumetric hydraulic drives. Discussion and Conclusion. Specialized software and the test bench permit high accurate monitoring of all technical condition parameters of the most common domestic and foreign volumetric hydraulic drives in accordance with the requirements of the manufacturers in the repair enterprises and service centers.


Sign in / Sign up

Export Citation Format

Share Document