Optimal allocation of renewable distributed generators and shunt capacitors in distribution system using hybrid intelligent approach

Author(s):  
M. Rajesh ◽  
R. Sitharthan ◽  
N. Prabaharan ◽  
Suresh Kumar Sudabattula ◽  
Velamuri Suresh
Author(s):  
Suresh Kumar Sudabattula ◽  
Kowsalya Muniswamy ◽  
Velamuri Suresh

Performance of a distribution system is negatively affected with the usage of non linear loads and rapid growth in electricity demand. It is possible to improve the voltage profile and reduce the power loss in a distribution system, by integrating distributed generators (DGs) and shunt capacitors (SCs). Identifying the optimal location and capacity of DGs and SCsare the crucial factors affecting the DS performance. This paper aims to reduce the power losses in the DS and facilitates an improvement in voltage profile with optimal allocation of DGs and SCs. First, the vulnerable nodes for placement of DGs and SCs are identified by loss sensitivity factor (LSF) technique. Next, the sizes of SCs and DGs at these corresponding locations are determined using a recently developed swarm intelligent technique dragonfly algorithm (DFA). Various constraints of the DS are included to estimate the objective function. To analyze the performance of the proposed method it is investigated on IEEE 69 bus radial distribution systems (RDS) considering constant power load at different load levels. Several case studies are conducted to analyze the performance of the DS. Three different load levels at different power factors are considered in the study. Initially few case studies are performed by considering single DG and single SC. Further the analyses are extended with multiple DGs and SCs. Finally, the proposed method is compared with other prominent methods accessible in the literature. It can be inferred from the analyses that simultaneous allocation of DGs and SCs in DS improves the overall performance of the system.


To meet the increasing real & reactive power demand of a distribution system (DS), it is essential to allocate the Distributed Generators (DGs) and Shunt capacitors (SCs) optimally. In this article, multiple DGs and SCs are allocated simultaneously in the DS aiming minimal power loss (PL), improved voltage stability index (VSI) and voltage profile of the system. A combined approach considering loss sensitivity factor (LSF) and political optimization algorithm (POA) is proposed to solve the allocation and sizing of DGs and SCs. The analysis is performed on an IEEE 33 bus system considering 9 different scenarios and results are compared with other Meta heuristic techniques. The analysis is extended for a 24 hour case study to prove the efficacy of the proposed combined approach. From all the performed simulations it can be observed that the combined approach helps in minimizing power loss and improving voltage profile and VSI for dynamic load variations effectively.


2021 ◽  
Vol 264 ◽  
pp. 04084
Author(s):  
Ikrom Khonturaev ◽  
Mansur Khasanov ◽  
Muhiddin Anarbaev ◽  
Abror Kurbanov ◽  
Anvar Suyarov ◽  
...  

In recent years the use of renewable energy sources (RES) by many power grid companies worldwide has increased significantly. The trend towards RES use is mainly due to environmental issues and rising fuel prices associated with conventional electricity generation. This paper introduces a hybrid approach to find the optimal location and size of distributed generations (DG) in the radial distribution system (RDS). The proposed approach is based on the atom search optimization (ASO) technique to calculate the optimal allocation of DGs and power loss sensitivity (PLS) index to obtain the best buses for DGs installation in RDS. The presented approach is applied to IEEE 33-bus RDS to increase voltage profile and minimize the power losses. The results obtained prove that the developed approach can be highly effective in integrating DG into RDS compared to many other methods in the literature.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


Sign in / Sign up

Export Citation Format

Share Document