Optimal allocation of Multiple Distributed Generators and Shunt Capacitors in a Distribution System using Political Optimization Algorithm

To meet the increasing real & reactive power demand of a distribution system (DS), it is essential to allocate the Distributed Generators (DGs) and Shunt capacitors (SCs) optimally. In this article, multiple DGs and SCs are allocated simultaneously in the DS aiming minimal power loss (PL), improved voltage stability index (VSI) and voltage profile of the system. A combined approach considering loss sensitivity factor (LSF) and political optimization algorithm (POA) is proposed to solve the allocation and sizing of DGs and SCs. The analysis is performed on an IEEE 33 bus system considering 9 different scenarios and results are compared with other Meta heuristic techniques. The analysis is extended for a 24 hour case study to prove the efficacy of the proposed combined approach. From all the performed simulations it can be observed that the combined approach helps in minimizing power loss and improving voltage profile and VSI for dynamic load variations effectively.

Author(s):  
Suresh Kumar Sudabattula ◽  
Kowsalya Muniswamy ◽  
Velamuri Suresh

Performance of a distribution system is negatively affected with the usage of non linear loads and rapid growth in electricity demand. It is possible to improve the voltage profile and reduce the power loss in a distribution system, by integrating distributed generators (DGs) and shunt capacitors (SCs). Identifying the optimal location and capacity of DGs and SCsare the crucial factors affecting the DS performance. This paper aims to reduce the power losses in the DS and facilitates an improvement in voltage profile with optimal allocation of DGs and SCs. First, the vulnerable nodes for placement of DGs and SCs are identified by loss sensitivity factor (LSF) technique. Next, the sizes of SCs and DGs at these corresponding locations are determined using a recently developed swarm intelligent technique dragonfly algorithm (DFA). Various constraints of the DS are included to estimate the objective function. To analyze the performance of the proposed method it is investigated on IEEE 69 bus radial distribution systems (RDS) considering constant power load at different load levels. Several case studies are conducted to analyze the performance of the DS. Three different load levels at different power factors are considered in the study. Initially few case studies are performed by considering single DG and single SC. Further the analyses are extended with multiple DGs and SCs. Finally, the proposed method is compared with other prominent methods accessible in the literature. It can be inferred from the analyses that simultaneous allocation of DGs and SCs in DS improves the overall performance of the system.


2013 ◽  
Vol 397-400 ◽  
pp. 1113-1116
Author(s):  
Xiao Meng Wu ◽  
Wang Hao Fei ◽  
Xiao Mei Xiang ◽  
Wen Juan Wang

In order to solve the problem in reactive power compensation of oilfield distribution systems at present, a Taboo search algorithm is proposed in this paper, by which the optimal location and size of shunt capacitors on distribution systems are determined. Then the voltage profile is improved and the active power loss is reduced. In this paper, Voltage qualified is used as objective function to search an initial solution that meets the voltage constraints so that it is feasible in practicable voltage range; then the global optimum solution can be got when taking the reduced maximum of active power loss as objective unction. The examples show that the improved algorithm is feasible and effective.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Distributed generation (DG) units can provide many benefits when they are incorporated along the distribution network/system. These benefits are more if DG units are connected at suitable nodes with appropriate rating otherwise, they may cause to increased power loss and poor voltage profile. In this work, optimal allocation (both location and size) problem is solved by considering power loss minimization as an objective function. An analytical method “index vector method (IVM)” is applied to find DG location. A new optimization algorithm “Whale Optimization Algorithm (WOA)” is employed to determine the DG rating. Two popularly known test systems “IEEE 33 & IEEE 69”bus systems are used to evaluate the efficacy of IVM and WOA.


At present the green environment plays a crucial part in fighting against the global warming. The Electric Vehicles which are eco-friendly provides the solution for these environmental issues which promotes low carbon emission. In the present scenario variation of the power flow and voltage profile at specific nodal junctions in a radial distribution system, when Electric Vehicle has been connected as a load is essential This paper shows the potential drop analysis on a distribution system with Electric Vehicle as a load. The results provide the total real power loss, total reactive power loss occurs in the radial test bus system and the voltage magnitude at nodes for an IEEE standard bus system. The Backward/Forward sweep method has been implemented on IEEE test bus radial distribution system. Various types of loads such as residential, commercial, and industrial with Electric Vehicles are considered for testing. The results indicate that a drop in voltage when Electric Vehicles has been integrated into the grid along with other consumers. The programming results has been compared with standard values and found to be satisfactory. Suggestions’ for improving the voltage profile had also included in this paper.


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


The main aim of the distribution system is delivery the power to the consumers. Because of, aging of electrical infrastructure, old control mechanism, increased power demand causing exploitation of the present electrical networks leads to low voltage profile, more active and reactive power loss with various power quality related issues causing poor network operation. In this method maximization of voltage profile with energy loss minimization is carried using network reconfiguration along with optimal siting of the distributed generation (DG). The proposed methodology is carried out on five bus system. The obtained results are impressive interms of voltage stability and power loss reduction.


Author(s):  
O.E. Olabode

Compensating reactive power deficiency on power grids is a central concern in the distribution of energy management systems. Several approaches have been adopted over time to minimize the total real power loss and enhancing bus voltage profile. Shunt capacitor has been used from time immemorial for addressing issue of reactive power compensation at the distribution end of power systems, and the extent of benefits derivable from its usage depend solely on correct siting and sizing. To this effect, meta-heuristic algorithms are promising optimization tools for achieving these objectives. This paper, therefore, presents a comprehensive review of cuckoo search algorithm based on optimal siting and sizing of shunt capacitors in radial distribution systems. The suitability, in addition to strengths and weakness of each approaches reported in the reviewed articles have been painstakingly x-rayed. Based on the review, it was observed that a two-stage approach is always adopted in the compensation process: the pre-selection of potential or sensitive nodes and the optimal sizing of shunt capacitors needed for the compensation. For the pre-location, Voltage Stability Index and Loss Sensitivity Factor were found to be comparatively less complex and highly suitable techniques. Another cogent discovery from this review is that less attention has been drawn to the use of cuckoo search algorithm by Nigerian researchers. Therefore, regarding Nigerian electric grid system, the use of cuckoo search algorithm in reactive power support presents a research gap for further investigations.


Sign in / Sign up

Export Citation Format

Share Document