A finite element simulation of the stress intensity factors in a plate with pre-cracked edge before and after coatings subjected to thermal loading

Author(s):  
Dipak Kumar ◽  
K.N. Pandey
2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Q. Ma ◽  
C. Levy ◽  
M. Perl

For the investigation of cracked problems in thick-walled pressurized cylindrical vessels, the displacement-based finite element method has become one of the main computational tools to extract stress intensity results for their fatigue life predictions. The process of autofrettage, practically from the partial autofrettage level of 30% to full autofrettage level of 100%, is known to introduce favorable compressive residual hoop stresses at the cylinder bore in order to increase its service life. In order to extract the fatigue life, stress intensity factors (SIFs) need to be obtained a priori. The necessity for determining SIFs and their practical importance are well understood. However, it is usually not a trivial task to obtain the SIFs required since the SIFs largely depend on not only the external loading scenarios, but also the geometrical configurations of the cylinder. Our recent work has shown that the Bauschinger effect (BE) may come into play and affect the effective SIFs significantly for an eroded fully autofrettaged thick-walled cylinder. In this study, we further investigate the SIFs for the Bauschinger effect dependent autofrettage (BEDA) and the Bauschinger effect independent autofrettage (BEIA) at various autofrettage levels. The crack is considered to emanate from the erosion's deepest point in a multiply eroded cylinder. The commercial finite element package, ANSYS v12, was employed to perform the necessary analysis. A two-dimensional model, analogous to the authors' previous studies, has been adopted for this investigation. The residual stress field of autofrettage process, based on von Mises yield criterion, is simulated by thermal loading. The combined SIFs are evaluated for a variety of relative crack lengths with cracks emanating from the tip of erosions with various geometrical configurations and span angles. The effective SIFs for relatively short cracks are found to be increased by the presence of the erosion and further increased due to the BE at the same autofrettage level, which may result in a significant decrease in the vessel's fatigue life. Deep cracks are found to be almost unaffected by the erosion, but may be considerably affected by BE as well as by the level of partial autofrettage.


2013 ◽  
Vol 353-356 ◽  
pp. 3369-3377 ◽  
Author(s):  
Ming Guang Shi ◽  
Chong Ming Song ◽  
Hong Zhong ◽  
Yan Jie Xu ◽  
Chu Han Zhang

A coupled method between the Scaled Boundary Finite Element Method (SBFEM) and Finite Element Method (FEM) for evaluating the Stress Intensity Factors (SIFs) is presented and achieved on the platform of the commercial finite element software ABAQUS by using Python as the programming language. Automatic transformation of the finite elements around a singular point to a scaled boundary finite element subdomain is realized. This method combines the high accuracy of the SBFEM in computing the SIFs with the ability to handle material nonlinearity as well as powerful mesh generation and post processing ability of commercial FEM software. The validity and accuracy of the method is verified by analysis of several benchmark problems. The coupled algorithm shows a good converging performance, and with minimum additional treatment can be able to handle more problems that cannot be solved by either SBFEM or FEM itself. For fracture problems, it proposes an efficient way to represent stress singularity for problems with complex geometry, loading condition or certain nonlinearity.


Author(s):  
S. W. Ng ◽  
K. J. Lau

Abstract In this paper a procedure is developed to assess the “local” accuracy of weight functions for finding stress intensity factors of centrally cracked finite plates given by Tsai and Ma (1989). It is found that the weight functions can be used to calculate stress intensity factors for practical cases, with “local” accuracy being within 6 %. In addition, weight functions generated from two finite element analyses are found to be accurate and may be used to assess new algorithms for finding weight functions.


1982 ◽  
Vol 104 (4) ◽  
pp. 299-307 ◽  
Author(s):  
T. Nishioka ◽  
S. N. Atluri

An alternating method, in conjunction with the finite element method and a newly developed analytical solution for an elliptical crack in an infinite solid, is used to determine stress intensity factors for semi-elliptical surface flaws in cylindrical pressure vessels. The present finite element alternating method leads to a very inexpensive procedure for routine evaluation of accurate stress intensity factors for flawed pressure vessels. The problems considered in the present paper are: (i) an outer semi-elliptical surface crack in a thick cylinder, and (ii) inner semi-elliptical surface cracks in a thin cylinder which were recommended for analysis by the ASME Boiler and Pressure Vessel Code (Section III, App. G, 1977). For each crack geometry of an inner surface crack, seven independent loadings, such as internal pressure loading on the cylinder surface and polynomial pressure loadings from constant to fifth order on the crack surface, are considered. From the analyses of these loadings, the magnification factors for the internal pressure loading and the polynomial influence functions for the polynomial crack surface loadings are determined. By the method of superposition, the magnification factors for internally pressurized cylinders are rederived by using the polynomial influence functions to check the internal consistency of the present analysis. These values agree excellently with the magnification factors obtained directly. The present results are also compared with the results available in literature.


2017 ◽  
Vol 2017 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Михаил Зернин ◽  
Mikhail Zernin

Babbit 83 crack resistance test in accordance with SSR 25-506-85 was carried out. By finite element method there were defined values of stress intensity factors in flat samples with a grown crack. The fracture viscosity characteristics of babbit are obtained. On the basis of a macro-fractographic analysis of wear fractures of a babbit sample and a finite element procedure for the definition of values of stress intensity factors the cha-racteristics of cyclic crack resistance are obtained. It is shown that a final fracture is realized at 3 МПа , and a transition from an elastic stage to the stage elastoplastic development of a crack is realized at 2,0…2,8 МПа .


Sign in / Sign up

Export Citation Format

Share Document