Detection of high frequency emission using ensemble empirical mode decomposition

2021 ◽  
Vol 17 (5) ◽  
pp. 510
Author(s):  
Tomina Thomas ◽  
Prawin Angel Michael
2012 ◽  
Vol 518-523 ◽  
pp. 3887-3890 ◽  
Author(s):  
Wei Chen ◽  
Shang Xu Wang ◽  
Xiao Yu Chuai ◽  
Zhen Zhang

This paper presents a random noise reduction method based on ensemble empirical mode decomposition (EEMD) and wavelet threshold filtering. Firstly, we have conducted spectrum analysis and analyzed the frequency band range of effective signals and noise. Secondly, we make use of EEMD method on seismic signals to obtain intrinsic mode functions (IMFs) of each trace. Then, wavelet threshold noise reduction method is used on the high frequency IMFs of each trace to obtain new high frequency IMFs. Finally, reconstruct the desired signal by adding the new high frequency IMFs on the low frequency IMFs and the trend item together. When applying our method on synthetic seismic record and field data we can get good results.


2011 ◽  
Vol 03 (04) ◽  
pp. 483-491 ◽  
Author(s):  
BRADLEY LEE BARNHART ◽  
HONDA KAHINDO WA NANDAGE ◽  
WILLIAM EICHINGER

This investigation presents an improved ensemble empirical mode decomposition (EEMD) algorithm that can be applied to discontinuous data. The quality of the algorithm is assessed by creating artificial data gaps in continuous data, then comparing the extracted intrinsic mode functions (IMFs) from both data sets. The results show that errors increase as the gap length increases. In addition, errors in the high-frequency IMFs are less than the low-frequency IMFs. The majority of the errors in the high-frequency IMFs are due to end-effect errors associated with under-defined interpolation functions near the gap endpoints. A method that utilizes a mirroring technique is presented to reduce the errors in the discontinuous decomposition. The improved algorithm provides a more locally accurate decomposition of the data amidst data gaps. Overall, this simple but powerful algorithm expands EEMD's ability to locally extract periodic components from discontinuous data.


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050035 ◽  
Author(s):  
DANLEI GU ◽  
JINGJING HUANG

We used the multifractal detrended cross-correlation analysis (MFDCCA) method based on ensemble empirical mode decomposition (EEMD) to study the 5-min high-frequency data of two Chinese stocks and two US stocks. Using EEMD method to decompose the original high-frequency stock data can effectively reduce the interference of noise on the series, which helps to reveal the internal characteristics of the stock system and extract more accurate and rich information. We first conducted a cross-correlation test and cross-correlation coefficient analysis on the reconstructed stock data of two groups, and found that there is a cross-correlations between them. Then we used the EEMD-based MFDCCA method to analyze the cross-correlation between the data and found that there are significant cross-correlations between DJI and NASDAQ and between SSEC and SZSE. The cross-correlation of the two Chinese stocks is stronger than that of the two US stocks. The MFDCCA results of the comparison of the original series with the reconstructed series after decomposition by the EEMD method show that the reconstructed series can display more internal details of the multifractal cross-correlation metrics compared with the original series.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document