A review on life cycle analysis and environmental sustainability assessment of bio-fuel

2022 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Aluri Nishanth Kumar ◽  
A. Sujin Jose ◽  
Naganna Tadepalli ◽  
Vallem VenkataSudheer Babu ◽  
Sudhakar Uppalapati ◽  
...  
2022 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Aluri Nishanth Kumar ◽  
A.A. Sujin Jose ◽  
S.P. Jani ◽  
Sudhakar Uppalapati ◽  
Vallem VenkataSudheer Babu ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4787 ◽  
Author(s):  
Muath Bani Salim ◽  
Dervis Emre Demirocak ◽  
Nael Barakat

In this paper, a new environmental sustainability indicator (ESI) is proposed to evaluate photovoltaic (PV) cells utilizing Life Cycle Analysis (LCA) principles. The proposed indicator is based on a model that employs a fuzzy logic algorithm to combine multiple factors, usually used in multiple LCAs, and produce results allowing a comprehensive interpretation of LCA phase sub-results leading to standardized comparisons of various PV cells. Such comparisons would be essential for policymakers and PV cell manufacturers and users, as they allow for fair assessment of the environmental sustainability of a particular type of PV with multiple factors. The output of the proposed model was tested and verified against published information on LCAs related to PV cells. A distinct feature of this fuzzy logic model is its expandability, allowing more factors to be included in the future, as desired by the users, or dictated by a new discovery. It also provides a platform that can be used to evaluate other families of products. Moreover, standardizing the comparison process helps in improving the sustainability of PV cells through targeting individual relevant factors for changes while tracking the combined final impact of these changes on the overall environmental sustainability of the PV cell.


Holzforschung ◽  
2018 ◽  
Vol 73 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Sara Bello ◽  
Iana Salim ◽  
Pedro Méndez-Trelles ◽  
Eva Rodil ◽  
Gumersindo Feijoo ◽  
...  

Abstract 2,5-Furandicarboxylic acid (FDCA) and 5-hydroxymethylfurfural (HMF) are top biomass-based platform chemicals with promising potential and an essential part of the future of green chemistry. HMF can be obtained mainly from fructose or glucose. Lignocellulosic glucose has a high production potential from not edible biomass. In the present paper life cycle assessment (LCA) was performed aiming at a better understanding of the environmental performance of the production of FDCA and HMF from lignocellulosic feedstock. Two case studies from the literature were modeled to obtain the life cycle inventory data. The production routes to FDCA comprise seven different process sections: hydrolysis, HMF synthesis, HMF recovery, FDCA synthesis, FDCA flash separation, FDCA purification and HMF boiler. By means of the LCA methodology, solvents such as dimethyl sulfoxide (DMSO) and dichloromethane (DCM), together with the energy demand, were found to be clear critical points in the process. Two scenarios were in focus: Scenario 1 considered the purification of FDCA through crystallization, whereas in Scenario 2 purification was performed through distillation.


2021 ◽  
Vol 110 ◽  
pp. 201-212
Author(s):  
Michele Costantini ◽  
Valentina Ferrante ◽  
Marcella Guarino ◽  
Jacopo Bacenetti

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3454
Author(s):  
Federico Rossi ◽  
Maria Laura Parisi ◽  
Sarah Greven ◽  
Riccardo Basosi ◽  
Adalgisa Sinicropi

This paper presents an environmental sustainability assessment of residential user-scale energy systems, named solar home systems, encompassing their construction, operation, and end of life. The methodology adopted is composed of three steps, namely a design phase, a simulation of the solar home systems’ performance and a life cycle assessment. The analysis aims to point out the main advantages, features, and challenges of lithium-ion batteries, considered as a benchmark, compared with other innovative devices. As the environmental sustainability of these systems is affected by the solar radiation intensity during the year, a sensitivity analysis is performed varying the latitude of the installation site in Europe. For each site, both isolated and grid-connected solar home systems have been compared considering also the national electricity mix. A general overview of the results shows that, regardless of the installation site, solid state nickel cobalt manganese and nickel cobalt aluminium lithium-ion batteries are the most suitable choices in terms of sustainability. Remarkably, other novel devices, like sodium-ion batteries, are already competitive with them and have great potential. With these batteries, the solar home systems’ eco-profile is generally advantageous compared to the energy mix, especially in on-grid configurations, with some exceptions.


Sign in / Sign up

Export Citation Format

Share Document