pv cell
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 168)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 309 ◽  
pp. 118466
Author(s):  
Seok Min Choi ◽  
Hyun Goo Kwon ◽  
Taehyun Kim ◽  
Hee Koo Moon ◽  
Hyung Hee Cho

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 500
Author(s):  
Aditya Pandey ◽  
Pramod Pandey ◽  
Jaya Shankar Tumuluru

This review uses a more holistic approach to provide comprehensive information and up-to-date knowledge on solar energy development in India and scientific and technological advancement. This review describes the types of solar photovoltaic (PV) systems, existing solar technologies, and the structure of PV systems. Substantial emphasis has been given to understanding the potential impacts of COVID-19 on the solar energy installed capacity. In addition, we evaluated the prospects of solar energy and the revival of growth in solar energy installation post-COVID-19. Further, we described the challenges caused by transitions and cloud enhancement on smaller and larger PV systems on the solar power amended grid-system. While the review is focused on evaluating the solar energy growth in India, we used a broader approach to compare the existing solar technologies available across the world. The need for recycling waste from solar energy systems has been emphasized. Improved PV cell efficiencies and trends in cost reductions have been provided to understand the overall growth of solar-based energy production. Further, to understand the existing technologies used in PV cell production, we have reviewed monocrystalline and polycrystalline cell structures and their limitations. In terms of solar energy production and the application of various solar technologies, we have used the latest available literature to cover stand-alone PV and on-grid PV systems. More than 5000 trillion kWh/year solar energy incidents over India are estimated, with most parts receiving 4–7 kWh/m2. Currently, energy consumption in India is about 1.13 trillion kWh/year, and production is about 1.38 trillion kWh/year, which indicates production capacities are slightly higher than actual demand. Out of a total of 100 GW of installed renewable energy capacity, the existing solar capacity in India is about 40 GW. Over the past ten years, the solar energy production capacity has increased by over 24,000%. By 2030, the total renewable energy capacity is expected to be 450 GW, and solar energy is likely to play a crucial role (over 60%). In the wake of the increased emphasis on solar energy and the substantial impacts of COVID-19 on solar energy installations, this review provides the most updated and comprehensive information on the current solar energy systems, available technologies, growth potential, prospect of solar energy, and need for growth in the solar waste recycling industry. We expect the analysis and evaluation of technologies provided here will add to the existing literature to benefit stakeholders, scientists, and policymakers.


2022 ◽  
Vol 12 (1) ◽  
pp. 443
Author(s):  
Hyunsoo Lim ◽  
Seong Hyeon Cho ◽  
Jiyeon Moon ◽  
Da Yeong Jun ◽  
Sung Hyun Kim

In the photovoltaic (PV) module manufacturing process, cell-to-module (CTM) loss is inevitably caused by the optical loss, and it generally leads to the output power loss of about 2~3%. It is known that the CTM loss rate can be reduced by increasing the reflectance of a backsheet and reflective area through widening spaces between the PV cell strings. In this study, multi-busbars (MBB) and shingled PV cells were connected in series, and a mini-module composed of four cells was fabricated with a white and black backsheet to investigate the effects of reflectance of backsheets and space between the PV cells. Moreover, the MBB modules with cell gap spaces of 0.5 mm, 1.5 mm, and 2.5 mm were demonstrated with fixed 3 mm spaces between the strings. The shingled modules with varying spaces from 2 mm to 6 mm were also tested, and our results show that spacing between PV cells and strings should be well-balanced to minimize the CTM loss to maximize the output power (efficiency).


2022 ◽  
Vol 123 ◽  
pp. 111905
Author(s):  
Firoz Khan ◽  
Mohd Taukeer Khan ◽  
Thamraa Alshahrani ◽  
Nafis Ahmad ◽  
A.M. Alshehri ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11929
Author(s):  
Amer Malki ◽  
Abdallah A. Mohamed ◽  
Yasser I. Rashwan ◽  
Ragab A. El-Sehiemy ◽  
Mostafa A. Elhosseini

The use of metaheuristics in estimating the exact parameters of solar cell systems contributes greatly to performance improvement. The nonlinear electrical model of the solar cell has some parameters whose values are necessary to design photovoltaic (PV) systems accurately. The metaheuristic algorithms used to determine solar cell parameters have achieved remarkable success; however, most of these algorithms still produce local optimum solutions. In any case, changing to more suitable candidates through elephant herd optimization (EHO) equations is not guaranteed; in addition, instead of making parameter α adaptive throughout the evolution of the EHO, making them adaptive during the evolution of the EHO might be a preferable choice. The EHO technique is used in this work to estimate the optimum values of unknown parameters in single-, double-, and three-diode solar cell models. Models for five, seven, and ten unknown PV cell parameters are presented in these PV cell models. Applications are employed on two types of PV solar cells: the 57 mm diameter RTC Company of France commercial silicon for single- and double-diode models and multi-crystalline PV solar module CS6P-240P for the three-diode model. The total deviations between the actual and estimated result are used in this study as the objective function. The performance measures used in comparisons are the RMSE and relative error. The performance of EHO and the proposed three improved EHO algorithms are evaluated against the well-known optimization algorithms presented in the literature. The experimental results of EHO and the three improved EHO algorithms go as planned and proved to be comparable to recent metaheuristic algorithms. The three EHO-based variants outperform all competitors for the single-diode model, and in particular, the culture-based EHO (CEHO) outperforms others in the double/three-diode model. According the studied cases, the EHO variants have low levels of relative errors and therefore high accuracy compared with other optimization algorithms in the literature.


2021 ◽  
Vol 11 (24) ◽  
pp. 11598
Author(s):  
Benjamin Commault ◽  
Tatiana Duigou ◽  
Victor Maneval ◽  
Julien Gaume ◽  
Fabien Chabuel ◽  
...  

On-board photovoltaic (PV) energy generation is starting to be deployed in a variety of vehicles while still discussing its benefits. Integration requirements vary greatly for the different vehicles. Numerous types of PV cells and modules technologies are ready or under development to meet the challenges of this demanding sector. A comprehensive review of fast-changing vehicle-integrated photovoltaic (VIPV) products and lightweight PV cell and module technologies adapted for integration into electric vehicles (EVs) is presented in this paper. The number of VIPV projects and/or products is on a steady rise, especially car-based PV integration. Our analysis differentiates projects according to their development stage and technical solutions. The advantages and drawbacks of various PV cell and module technologies are discussed, in addition to recommendations for wide-scale deployment of the technologies.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8129
Author(s):  
Sajjad Mahmoudinezhad ◽  
Petru Adrian Cotfas ◽  
Daniel Tudor Cotfas ◽  
Enok Johannes Haahr Skjølstrup ◽  
Kjeld Pedersen ◽  
...  

In the current study, the electrical responses of a thermoelectric (TE) module and a photovoltaic (PV) cell are investigated in three different systems, namely, a PV-only system, TE-only system, and hybrid TE-PV system with a beam splitter (TE-PV-BS), under variable solar irradiations demonstrating partly cloudy weather conditions. To enhance the deployment of solar energy, a predesigned beam splitter combined with the amorphous silicon TE and PV system is used in the experiments. The impact of the spectral beam splitting technology on the conversion performance of the TE module and PV cell in the hybrid system is studied and compared to the performance of the TE-only and PV-only systems. The electrical output parameters of the TE module and PV cell are obtained for the studied systems, and they are discussed in detail. The results of this work show that the power generated by the PV cell has a stepwise fluctuation similar to the variation in the concentrated solar radiation. Affected by its heat capacity, the power variation is monotonous with the TE module. The results moreover indicate that there is more power generated by the PV cell in the TE-PV-BS hybrid system than by the PV-only system. In comparison, the TE-only system produces more power than the TE module in the hybrid system. Furthermore, the TE-PV-BS hybrid system generates higher and more stable electrical power than the TE-only and PV-only systems, showing a significant advantage of the spectrum management concept.


2021 ◽  
Author(s):  
Paul O'Brien ◽  
Nima Talebzadeh ◽  
Atousa Pirvaram

Herein we present an optical cavity in the form of a prolate ellipsoid that can greatly enhance the performance of solar thermophotovoltaic (STPV) systems. The geometrical parameters of the cavity can be designed to control the degree of photon recycling, the temperature of the emitter within the STPV system, gap distance and effective view factor between the PV cell and the emitter, and to minimize the emission losses. Numerical analysis shows the ellipsoidal optical cavity can be designed to achieve an effective view factor of 88.7% between the emitter and PV cell within a STPV system. Results show an efficiency of 5.62% in a STPV system with a GaSb PV cell and a black-body emitter under solar radiation at a concentration factor of 350X. Further, assuming the surface of the ellipsoidal optical cavity is capable of reflecting 99% of the radiation incident onto its surface, efficiencies of 15.54% can be attained when the solar concentration factor is 1400X. These results are attained for STPV systems without using selective absorbers, emitters or filters. The ellipsoidal optical cavity can be integrated into the design of advanced TPV systems and bring them closer to the high theoretical efficiencies TPV systems are capable of.


Sign in / Sign up

Export Citation Format

Share Document