Spacecraft attitude control using non-singular finite time convergence fast terminal sliding mode

2012 ◽  
Vol 1 (2) ◽  
pp. 124 ◽  
Author(s):  
Pyare Mohan Tiwari ◽  
S. Janardhanan ◽  
Masuq un Nabi
Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 332
Author(s):  
Van-Cuong Nguyen ◽  
Phu-Nguyen Le ◽  
Hee-Jun Kang

In this study, a fault-tolerant control (FTC) tactic using a sliding mode controller–observer method for uncertain and faulty robotic manipulators is proposed. First, a finite-time disturbance observer (DO) is proposed based on the sliding mode observer to approximate the lumped uncertainties and faults (LUaF). The observer offers high precision, quick convergence, low chattering, and finite-time convergence estimating information. Then, the estimated signal is employed to construct an adaptive non-singular fast terminal sliding mode control law, in which an adaptive law is employed to approximate the switching gain. This estimation helps the controller automatically adapt to the LUaF. Consequently, the combination of the proposed controller–observer approach delivers better qualities such as increased position tracking accuracy, reducing chattering effect, providing finite-time convergence, and robustness against the effect of the LUaF. The Lyapunov theory is employed to illustrate the robotic system’s stability and finite-time convergence. Finally, simulations using a 2-DOF serial robotic manipulator verify the efficacy of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fang Yang ◽  
Kuanqiao Zhang ◽  
Lei Yu

A nonsingular fast terminal sliding mode guidance law with an impact angle constraint is proposed to solve the problem of missile guidance accuracy and impact angle constraint for maneuvering targets. Aiming at the singularity problem of the terminal sliding mode, a fast terminal sliding mode surface with finite-time convergence and impact angle constraint is designed based on fixed-time convergence and piecewise sliding mode theory. To weaken chattering and suppress interference, a second-order sliding mode supertwisting algorithm is improved. By designing the parameter adaptive law, an adaptive smooth supertwisting algorithm is designed. This algorithm can effectively weaken chattering without knowing the upper bound information of interference, and it converges faster. Based on the proposed adaptive supertwisting algorithm and the sliding mode surface, a guidance law with the impact angle constraint is designed. The global finite-time convergence of the guidance law is proved by constructing the Lyapunov function. The simulation results verify the effectiveness of the proposed guidance law, and compared with the existing terminal sliding mode guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy.


Sign in / Sign up

Export Citation Format

Share Document