Optimal production time and preservation technology investment for seasonal deteriorating products with a generalized ramp-type demand

Author(s):  
Bibhas Chandra Giri ◽  
Sudarshan Bardhan ◽  
H. Pal
2019 ◽  
Vol 11 (18) ◽  
pp. 5027 ◽  
Author(s):  
Shen ◽  
Shen ◽  
Yang

The increase in carbon emissions is considered one of the major causes of global warming and climate change. To reduce the potential environmental and economic threat from such greenhouse gas emissions, governments must formulate policies related to carbon emissions. Most economists favor the carbon tax as an approach to reduce greenhouse gas emissions. This market-based approach is expected to inevitably affect enterprises’ operating activities such as production, inventory, and equipment investment. Therefore, in this study, we investigate a production inventory model for deteriorating items under a carbon tax policy and collaborative preservation technology investment from the perspective of supply chain integration. Our main purpose is to determine the optimal production, delivery, ordering, and investment policies for the buyer and vendor that maximize the joint total profit per unit time in consideration of the carbon tax policy. We present several numerical examples to demonstrate the solution procedures, and we conduct sensitivity analyses of the optimal solutions with respect to major parameters for identifying several managerial implications that provide a useful decision tool for the relevant managers. We hope that the study results assist government organizations in selecting a more appropriate carbon emissions policy for the carbon reduction trend.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yufu Ning ◽  
Na Pang ◽  
Xiao Wang

In this paper, we study the aggregate production planning problem for vegetables within the framework of uncertainty theory. In detail, preservation technology investment is taken into consideration to reduce the deterioration rate and improve the freshness of the vegetables. Meanwhile, an expected profit model considering preservation technology investment under the capacity constraints is built, whose objective is to find the optimal yield, workforce, and preservation investment strategies. Moreover, the proposed model can be transformed into its crisp equivalent form. Finally, a numerical example is carried out to illustrate the effectiveness of the proposed uncertain aggregate production planning model.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Umakanta Mishra ◽  
Jacobo Tijerina-Aguilera ◽  
Sunil Tiwari ◽  
Leopoldo Eduardo Cárdenas-Barrón

This article develops an inventory model for deteriorating items with controllable deterioration rate (by using preservation technology) under trade credit policy. As in practical scenarios the demand of an item is directly associated with its selling price, keeping this in mind, it is assumed to be a price dependent demand. The main objective of the inventory model is to determine jointly the optimal ordering, pricing, and preservation technology investment policies for retailer so that the total profit is maximized. The effects of key parameters on optimal solution are studied through a sensitivity analysis with the aim of examining the behavior of the inventory model with controllable deterioration under the permissible delay in payments.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chandan Mahato ◽  
Gour Chandra Mahata

<p style='text-indent:20px;'>In the business world, both the supplier and the retailer accept the credit to make their business position strong, because the credit not only strengthens their business relationships but also increases the scale of their profits. In this paper, we consider an inventory model for non-instantaneous deteriorating items with price sensitive demand, time varying deterioration rate under two-level trade credit policy. Besides, to reduce deterioration rate, retailers invest some cost to prevent product degradation/decay, known as preservation technology, is also inserted. Consumption of such items within shelf life prevents to deterioration, which can be achieved by bulk sale. In order to stimulate the selling, trade-credit policy is also considered here. In the sequel, not only the supplier would offer fixed credit period to the retailer, but retailer also adopt the trade credit policy to the customers in order to promote the market competition. The retailer can accumulate revenue and interest after the customer pays for the amount of purchasing cost to the retailer until the end of the trade credit period offered by the supplier. The main objective is to determine the optimal replenishment, pricing and preservation technology investment strategies including whether or not invest in preservation technology and how much to invest in order to maximize the average profit of the system. It is proved that the optimal replenishment policy not only exists but is unique for any given selling price and preservation technology cost. An algorithm is presented to derive the optimal solutions of the model. Numerous theorems and lemmas have been inserted to obtain the optimal solution. Finally, numerical examples and managerial implications are incorporated to validate the proposed model.</p>


Sign in / Sign up

Export Citation Format

Share Document