scholarly journals Experimental study on micro-milling of Ti6Al4V with minimum quantity lubrication

2013 ◽  
Vol 9 (5/6) ◽  
pp. 570 ◽  
Author(s):  
Xiaohu Zheng ◽  
Zhiqiang Liu ◽  
Ming Chen ◽  
Xibin Wang
Author(s):  
Xueming Yang ◽  
Xiang Cheng ◽  
Yang Li ◽  
Guangming Zheng ◽  
Rufeng Xu

Machining conditions such as cutting fluids exert a crucial function in micro-milling, which removes chips from the cutting area and lubricates the interface between the tool and workpiece. Therefore, it is necessary to identify suitable cutting fluids for processing different materials. In this article, the effects of cutting fluids (dry, flood cooling, minimum quantity lubrication, and jet cold air) on tool wear, surface roughness, and cutting force were studied. The Pugh matrix environmental approach was used to compare different cutting fluids in terms of sustainable production. In addition, a curved thin wall was processed to demonstrate the value of minimum quantity lubrication in industry. The experimental results illustrated that the minimum quantity lubrication can not only effectively reduce tool wear and cutting force but also improve the finished surface quality. According to the sustainability assessment results, minimum quantity lubrication was superior to other cutting fluids in terms of environmental impact and production quality. The curved thin wall size error was only 2.25% under minimum quantity lubrication condition. This indicated minimum quantity lubrication was particularly suitable for micro-milling of H59 brass and 6061 aluminum compared to other cutting fluids.


2013 ◽  
Vol 770 ◽  
pp. 7-12 ◽  
Author(s):  
Kang Li ◽  
Li Jiang ◽  
Ming Chen

External thread turning is a complex 3-D process in which the cutting conditions vary over the thread cutter profile. There are a lot of factors that affect the thread precision. This paper focuses on the influences of the lubrication method, cutting speed and the number of passes on the thread precision. Several stainless steel turning tests were conducted. The results showed that lubrication method was the most important factor that affected the thread precision, while the number of passes was the least important one. MQL (Minimum Quantity Lubrication) could reach the effect corresponding to wet cutting at specific cutting parameters and showed great potential to replace traditional lubrication method.


2012 ◽  
Vol 579 ◽  
pp. 193-200 ◽  
Author(s):  
Kuan Ming Li

Mechanical micromachining is a promising technique for making complex microstructures. It is challenging to apply mechanical micromachining in the industry due to the low strength of micro tools. Therefore, it is not easy to accurately control the product dimension error and to raise the production rate. In this paper, the applications of minimum quantity lubrication (MQL) in micro-milling and micro-grinding are presented. MQL is considered as a green manufacturing technology in metal cutting due to its low impact on the environment and human health. This study compares the tool wear and surface roughness in MQL micromachining to completely dry condition based on experimental investigations. The supply of MQL in vibration-assisted grinding is also studied. It is found that the use of MQL results in longer tool life and better surface roughness in mechanical micromachining.


Sign in / Sign up

Export Citation Format

Share Document