Dynamic control policy for the discrete-time queue

Author(s):  
Tsung Yin Wang ◽  
Fu Min Chang
2016 ◽  
Vol 30 (3) ◽  
pp. 470-491
Author(s):  
Yingdong Lu ◽  
Mayank Sharma ◽  
Mark S. Squillante ◽  
Bo Zhang

Motivated by applications in areas such as cloud computing and information technology services, we consider GI/GI/1 queueing systems under workloads (arrival and service processes) that vary according to one discrete time scale and under controls (server capacity) that vary according to another discrete time scale. We take a stochastic optimal control approach and formulate the corresponding optimal dynamic control problem as a stochastic dynamic program. Under general assumptions for the queueing system, we derive structural properties for the optimal dynamic control policy, establishing that the optimal policy can be obtained through a sequence of convex programs. We also derive fluid and diffusion approximations for the problem and propose analytical and computational approaches in these settings. Computational experiments demonstrate the benefits of our theoretical results over standard heuristics.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yuejiao Wang ◽  
Zaiming Liu

In this paper, we consider a double-ended queueing system which is a passenger-taxi service system. In our model, we also consider the dynamic taxi control policy which means that the manager adjusts the arrival rate of taxis according to the taxi stand congestion. Under three different information levels, we study the equilibrium strategies as well as socially optimal strategies for arriving passengers by a reward-cost structure. Furthermore, we present several numerical experiments to analyze the relationship between the equilibrium and socially optimal strategies and demonstrate the effect of different information levels as well as several parameters on social benefit.


2006 ◽  
Vol 18 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Mizuho Shibata ◽  
◽  
Shinichi Hirai

To analyze the stability of dynamic control through asoft interface-the viscoelastic material between a manipulating finger and a manipulated object- we model dynamic control through the soft interface in continuous-discrete time. We then formulate dynamics using a modified z-transform in continuous-discrete time for feedback and feedforward control. We show that system stability depends on the viscoelasticity of the soft interface for feedback control. The relationship between material viscosity and sampling time in critical stability is not monotonous, a phenomenon we analyze by root locus. We compare stability analysis by the modified z-transform, simulations based on the Runge-Kutta method, and a regular z-transform, demonstrating that the relationship is specific to a continuous-discrete time.


Sign in / Sign up

Export Citation Format

Share Document