Wind tunnel tests and aerodynamic numerical simulations of car opening windows

2012 ◽  
Vol 58 (1) ◽  
pp. 62 ◽  
Author(s):  
Ying Chao Zhang ◽  
Jing Zhao ◽  
Jie Li ◽  
Zhe Zhang
2019 ◽  
Vol 162 ◽  
pp. 74-87 ◽  
Author(s):  
Zhixiang Liu ◽  
Zhixiang Yu ◽  
Fu Zhu ◽  
XiaoXiao Chen ◽  
Yi Zhou

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xintong Jiang ◽  
Zhixiang Yin ◽  
Hanbo Cui

A long-span sports centre generally comprises multiple stadiums and gymnasiums, for which mutual interference effects of wind-induced snow motion are not explicitly included in the specifications of various countries. This problem is addressed herein by performing wind tunnel tests and numerical simulations to investigate the snow distribution and mutual interference effect on the roofs of long-span stadiums and gymnasiums. The wind tunnel tests were used to analyse the influences of the opening direction (0°, 90°, 180°, and 270°) and spacing (0.3 L, 0.5 L, 1 L, 1.5 L, 2 L, and 2.5 L, where L is the gymnasium span) of the stadium and gymnasium. The wind tunnel tests and numerical simulations were used to analyse the influence of the wind direction angle (from 0° to 315°, there are a total of eight groups in 45° intervals). The following results were obtained. The stadium opening had a significant effect on the snow distribution on the surface of the two structures. An even snow distribution was obtained when the stadium opened directly facing the gymnasium, which corresponded to the safest condition for the structures’ surfaces. As the spacing between the buildings increased, the interference effect between the two structures was reduced. The interference was negligible for a spacing of 2 L. The stadium had the most significant amplification interference effect on the gymnasium for a wind direction angle of 45°, which was extremely unfavourable to the safety of the structure. The most favourable wind direction angle was 270°, where there were both amplification interference and blockage interference.


2020 ◽  
Vol 57 ◽  
pp. 102116 ◽  
Author(s):  
Senlin Zheng ◽  
Jean-Michel Guldmann ◽  
Zhixin Liu ◽  
Lihua Zhao ◽  
Junsong Wang ◽  
...  

2016 ◽  
Vol 15 (3) ◽  
pp. 029-051 ◽  
Author(s):  
Tomasz Lipecki ◽  
Paulina Jamińska

The paper reviews nowadays problems and issues of wind engineering and aerodynamics of building structures. The article mainly focuses on aerodynamics of building structures, shortly characterizing theoretical bases, which one must take into account when assuming wind loads. The three different approaches of collecting information in the field of wind loads are described: in-situ measurements, wind tunnel tests and numerical simulations. Also, a review of the most important contemporary issues of wind engineering is presented.


2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


Sign in / Sign up

Export Citation Format

Share Document