7. Decision Neuroscience

2019 ◽  
pp. 130-156
2019 ◽  
Author(s):  
Payam Piray ◽  
Nathaniel D. Daw

AbstractSound principles of statistical inference dictate that uncertainty shapes learning. In this work, we revisit the question of learning in volatile environments, in which both the first and second-order statistics of observations dynamically evolve over time. We propose a new model, the volatile Kalman filter (VKF), which is based on a tractable state-space model of uncertainty and extends the Kalman filter algorithm to volatile environments. The proposed model is algorithmically simple and encompasses the Kalman filter as a special case. Specifically, in addition to the error-correcting rule of Kalman filter for learning observations, the VKF learns volatility according to a second error-correcting rule. These dual updates echo and contextualize classical psychological models of learning, in particular hybrid accounts of Pearce-Hall and Rescorla-Wagner. At the computational level, compared with existing models, the VKF gives up some flexibility in the generative model to enable a more faithful approximation to exact inference. When fit to empirical data, the VKF is better behaved than alternatives and better captures human choice data in two independent datasets of probabilistic learning tasks. The proposed model provides a coherent account of learning in stable or volatile environments and has implications for decision neuroscience research.


2020 ◽  
Vol 15 (4) ◽  
pp. 383-393
Author(s):  
Kelsey R McDonald ◽  
John M Pearson ◽  
Scott A Huettel

Abstract Understanding how humans make competitive decisions in complex environments is a key goal of decision neuroscience. Typical experimental paradigms constrain behavioral complexity (e.g. choices in discrete-play games), and thus, the underlying neural mechanisms of dynamic social interactions remain incompletely understood. Here, we collected fMRI data while humans played a competitive real-time video game against both human and computer opponents, and then, we used Bayesian non-parametric methods to link behavior to neural mechanisms. Two key cognitive processes characterized behavior in our task: (i) the coupling of one’s actions to another’s actions (i.e. opponent sensitivity) and (ii) the advantageous timing of a given strategic action. We found that the dorsolateral prefrontal cortex displayed selective activation when the subject’s actions were highly sensitive to the opponent’s actions, whereas activation in the dorsomedial prefrontal cortex increased proportionally to the advantageous timing of actions to defeat one’s opponent. Moreover, the temporoparietal junction tracked both of these behavioral quantities as well as opponent social identity, indicating a more general role in monitoring other social agents. These results suggest that brain regions that are frequently implicated in social cognition and value-based decision-making also contribute to the strategic tracking of the value of social actions in dynamic, multi-agent contexts.


2017 ◽  
Vol 26 (3-4) ◽  
pp. 429-433
Author(s):  
Andrew Bollhagen ◽  
John Bickle

Sign in / Sign up

Export Citation Format

Share Document