8. Correlation between the Electrostatic Potential and the Impact Sensitivity

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangtao Xing ◽  
Weili Wang ◽  
Wenzheng Xu ◽  
Tianle Yao ◽  
Jun Dong ◽  
...  

In order to improve the safety of hexanitrohexaazaisowurtzitane (CL-20), submicron CL-20 particles were prepared by a siphon ultrasonic-assisted spray refining experimental device. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and the impact sensitivity of the samples was tested. The results show that the particle size of siphon-refined CL-20 is about 800 nm~1 μm, which is more smooth, mellow, and dense than that of CL-20 prepared by a traditional pressure-refined method. The peak diffraction angle of pressure- and siphon-refined CL-20 is basically the same as that of raw CL-20, and their crystal forms are ε type. The peak strength of pressure- and siphon-refined CL-20 decreased obviously. The apparent activation energy of pressure-refined CL-20 and siphon-refined CL-20 is 13.3 kJ/mol and 11.95 kJ/mol higher than that of raw CL-20, respectively. The thermal stability of CL-20 is improved. The activation enthalpy (ΔH#) is significantly higher than that of raw CL-20, and the characteristic drop is 70.4% and 82.7% higher than that of raw CL-20. The impact sensitivity of siphon-refined CL-20 is lower than that of pressure-refined CL-20, so the safety performance of an explosive is improved obviously.


2013 ◽  
Vol 453 (1) ◽  
pp. 261-263 ◽  
Author(s):  
A. A. Denisaev ◽  
I. G. Assovskii ◽  
A. A. Berlin

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4409
Author(s):  
Carlo Gatti ◽  
Alessandro Dessì ◽  
Roberto Dallocchio ◽  
Victor Mamane ◽  
Sergio Cossu ◽  
...  

Positive electrostatic potential (V) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V. Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader–Gatti source function (SF) for the electron density to V. In this article, this general methodology is applied to a series of 4,4′-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C–Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces (VS) and by comparing and dissecting in atomic/atomic group contributions the VS maxima (VS,max) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.


Sign in / Sign up

Export Citation Format

Share Document