Influence of extraneous material on the impact sensitivity of explosives

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangtao Xing ◽  
Weili Wang ◽  
Wenzheng Xu ◽  
Tianle Yao ◽  
Jun Dong ◽  
...  

In order to improve the safety of hexanitrohexaazaisowurtzitane (CL-20), submicron CL-20 particles were prepared by a siphon ultrasonic-assisted spray refining experimental device. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and the impact sensitivity of the samples was tested. The results show that the particle size of siphon-refined CL-20 is about 800 nm~1 μm, which is more smooth, mellow, and dense than that of CL-20 prepared by a traditional pressure-refined method. The peak diffraction angle of pressure- and siphon-refined CL-20 is basically the same as that of raw CL-20, and their crystal forms are ε type. The peak strength of pressure- and siphon-refined CL-20 decreased obviously. The apparent activation energy of pressure-refined CL-20 and siphon-refined CL-20 is 13.3 kJ/mol and 11.95 kJ/mol higher than that of raw CL-20, respectively. The thermal stability of CL-20 is improved. The activation enthalpy (ΔH#) is significantly higher than that of raw CL-20, and the characteristic drop is 70.4% and 82.7% higher than that of raw CL-20. The impact sensitivity of siphon-refined CL-20 is lower than that of pressure-refined CL-20, so the safety performance of an explosive is improved obviously.


2013 ◽  
Vol 453 (1) ◽  
pp. 261-263 ◽  
Author(s):  
A. A. Denisaev ◽  
I. G. Assovskii ◽  
A. A. Berlin

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Conghua Hou ◽  
Xinlei Jia ◽  
Jingyu Wang ◽  
Yingxin Tan ◽  
Yuanping Zhang ◽  
...  

A new one-step granulation process for preparing high melting explosive- (HMX-) based PBX was developed. HMX/F2602 microspheres were successfully prepared by using HMX and F2602 as the main explosive and binder, respectively. The particle morphology, particle size, crystal structure, thermal stability, and impact sensitivity of the as-prepared HMX/F2602 microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle size analyzer, differential scanning calorimetry (DSC), and impact sensitivity test, respectively. The SEM analysis indicated successful coating of F2602 on the surface of HMX, and the resulting particles are ellipsoidal or spherical with a median particle size of 940 nm; the XRD analysis did not show any change in the crystal structure after the coating and still has β-HNX crystal structure; according to the DSC analysis, HMX/F2602 prepared by the new method has better thermal stability compared to that prepared by the water suspension process. The impact sensitivity of HMX/F2602 prepared by this one-step granulation process decreased, and its characteristic height H50 increased from 37.62 to 40.13 cm, thus significantly improving the safety performance. More importantly, this method does not need the freeze-drying process after recrystallization, thus increasing the efficiency by 2 to 3 times.


2021 ◽  
Author(s):  
Adam A.L. Michalchuk ◽  
Svemir Rudic ◽  
Colin R. Pulham ◽  
Carole Morrison

The impact sensitivity (IS) of FOX-7 polymorphs is predicted by phonon up-pumping to decrease as layers of FOX-7 molecules flatten. Experimental validation proved anomalous owing to a phase transition during...


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Weiqiang Pang ◽  
Chongqing Deng ◽  
Huan Li ◽  
Luigi T. DeLuca ◽  
Dihua Ouyang ◽  
...  

As a hot research topic, nano-scale energetic materials have recently attracted much attention in the fields of propellants and explosives. The preparation of different types of nano-sized energetic materials were carried out, and the effects of nano-sized energetic materials (nEMs) on the properties of solid propellants and explosives were investigated and compared with those of micro-sized ones, placing emphasis on the investigation of the hazardous properties, which could be useable for solid rocket nozzle motor applications. It was found that the nano-sized energetic materials can decrease the impact sensitivity and friction sensitivity of solid propellants and explosives compared with the corresponding micro-sized ones, and the mechanical sensitivities are lower than that of micro-sized particles formulation. Seventy-nine references were enclosed.


2020 ◽  
Vol 1 (1) ◽  
pp. 40-49 ◽  
Author(s):  
Xiaoxue Xiong ◽  
Xudong He ◽  
Ying Xiong ◽  
Xianggui Xue ◽  
Haijun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document