13. More about convex sets and convex hulls

2016 ◽  
pp. 83-88
Keyword(s):  
10.37236/6516 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Megumi Asada ◽  
Ryan Chen ◽  
Florian Frick ◽  
Frederick Huang ◽  
Maxwell Polevy ◽  
...  

Reay's relaxed Tverberg conjecture and Conway's thrackle conjecture are open problems about the geometry of pairwise intersections. Reay asked for the minimum number of points in Euclidean $d$-space that guarantees any such point set admits a partition into $r$ parts, any $k$ of whose convex hulls intersect. Here we give new and improved lower bounds for this number, which Reay conjectured to be independent of $k$. We prove a colored version of Reay's conjecture for $k$ sufficiently large, but nevertheless $k$ independent of dimension $d$. Pairwise intersecting convex hulls have severely restricted combinatorics. This is a higher-dimensional analogue of Conway's thrackle conjecture or its linear special case. We thus study convex-geometric and higher-dimensional analogues of the thrackle conjecture alongside Reay's problem and conjecture (and prove in two special cases) that the number of convex sets in the plane is bounded by the total number of vertices they involve whenever there exists a transversal set for their pairwise intersections. We thus isolate a geometric property that leads to bounds as in the thrackle conjecture. We also establish tight bounds for the number of facets of higher-dimensional analogues of linear thrackles and conjecture their continuous generalizations.


2018 ◽  
Vol 28 (3) ◽  
pp. 473-482
Author(s):  
NABIL H. MUSTAFA ◽  
SAURABH RAY

Let C be a bounded convex object in ℝd, and let P be a set of n points lying outside C. Further, let cp, cq be two integers with 1 ⩽ cq ⩽ cp ⩽ n - ⌊d/2⌋, such that every cp + ⌊d/2⌋ points of P contain a subset of size cq + ⌊d/2⌋ whose convex hull is disjoint from C. Then our main theorem states the existence of a partition of P into a small number of subsets, each of whose convex hulls are disjoint from C. Our proof is constructive and implies that such a partition can be computed in polynomial time.In particular, our general theorem implies polynomial bounds for Hadwiger--Debrunner (p, q) numbers for balls in ℝd. For example, it follows from our theorem that when p > q = (1+β)⋅d/2 for β > 0, then any set of balls satisfying the (p, q)-property can be hit by O((1+β)2d2p1+1/β logp) points. This is the first improvement over a nearly 60 year-old exponential bound of roughly O(2d).Our results also complement the results obtained in a recent work of Keller, Smorodinsky and Tardos where, apart from improvements to the bound on HD(p, q) for convex sets in ℝd for various ranges of p and q, a polynomial bound is obtained for regions with low union complexity in the plane.


2012 ◽  
Vol 141 (1-2) ◽  
pp. 507-526 ◽  
Author(s):  
Santanu S. Dey ◽  
Diego A. Morán R.

Author(s):  
Neng-Yu Zhang ◽  
Bruce F. McEwen ◽  
Joachim Frank

Reconstructions of asymmetric objects computed by electron tomography are distorted due to the absence of information, usually in an angular range from 60 to 90°, which produces a “missing wedge” in Fourier space. These distortions often interfere with the interpretation of results and thus limit biological ultrastructural information which can be obtained. We have attempted to use the Method of Projections Onto Convex Sets (POCS) for restoring the missing information. In POCS, use is made of the fact that known constraints such as positivity, spatial boundedness or an upper energy bound define convex sets in function space. Enforcement of such constraints takes place by iterating a sequence of function-space projections, starting from the original reconstruction, onto the convex sets, until a function in the intersection of all sets is found. First applications of this technique in the field of electron microscopy have been promising.To test POCS on experimental data, we have artificially reduced the range of an existing projection set of a selectively stained Golgi apparatus from ±60° to ±50°, and computed the reconstruction from the reduced set (51 projections). The specimen was prepared from a bull frog spinal ganglion as described by Lindsey and Ellisman and imaged in the high-voltage electron microscope.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents some results about groups generated by reflections and the standard metric on a Bruhat-Tits building. It begins with definitions relating to an affine subspace, an affine hyperplane, an affine span, an affine map, and an affine transformation. It then considers a notation stating that the convex closure of a subset a of X is the intersection of all convex sets containing a and another notation that denotes by AGL(X) the group of all affine transformations of X and by Trans(X) the set of all translations of X. It also describes Euclidean spaces and assumes that the real vector space X is of finite dimension n and that d is a Euclidean metric on X. Finally, it discusses Euclidean representations and the standard metric.


Sign in / Sign up

Export Citation Format

Share Document