ELLIPTICITY OF BENDING AND MEMBRANE SHELL EQUATIONS

Author(s):  
PHILIPPE G. CIARLET ◽  
EVARISTE SANCHEZ-PALENCIA
2017 ◽  
Vol 130 (1) ◽  
pp. 85-113 ◽  
Author(s):  
G. Castiñeira ◽  
Á. Rodríguez-Arós

2010 ◽  
Vol 10 (04) ◽  
pp. 601-621 ◽  
Author(s):  
ANDREAS RITTWEGER ◽  
SUSANNE CHRISTIANSON ◽  
HUBA ÖRY

The dimensioning of an orthotropically stiffened cylindrical CFRP shell subjected to the introduction of concentrated axial loads using rapid analytical methods is presented. For stress calculation the shell equations are simplified by applying the semibending theory and integrated by employing the transfer matrix method. Analytical approaches are used for stability verification. The dimensioning considers required constraints in the force flux distribution, strength of the laminate, general instability, panel instability (from ring frame to ring frame) and local instability. The rapid analytical methods allow mass optimization. The final design is confirmed by detailed FE analysis. A comparison of the FE analysis with the analytical results is shown.


2021 ◽  
Author(s):  
Miloš Kojić ◽  

Modeling of heart wall deformation remains a challenge due to complex structure of tissue, which contains different group of cells and connective tissue. Muscle cells are dominant where, besides stresses coming from tissue deformation, active stresses are generated representing the load which produces heart motion and function. These cells form a helicoidal structure within so- called wall sheets and are considered as tissue fibers. Usual approach in the finite element (FE) discretization is to use 3D isoparametric elements. The dominant stresses lie in the sheet planes, while normal stresses in the wall normal directions are of the order smaller. Taking this stress state into account, we explore a possibility to model heart wall by membrane finite elements, hence considering the wall as a thick membrane (shell without bending effects). The membrane element is composite, containing layers over the thickness and variation of the direction of fibers. The formulated element is applied to a simplified left ventricle geometry to demonstrate a possibility to simulate heart mechanics by models which are much smaller and simpler for use than 3D conventional models.


1974 ◽  
Vol 18 (01) ◽  
pp. 55-61
Author(s):  
Vincent Volpe ◽  
Youl-Nan Chen ◽  
Joseph Kempner

A stability analysis of an infinitely long web-stiffened, circular cylindrical sandwich shell under uniform axial compression is presented. The formulation begins with the establishment of a set of suitable large-deflection shell equations that forms the basis for the subsequent development of the buckling equations. The mathematical model corresponds to two face layers that are considered as thin shells and a thick core that is capable of resisting both transverse shear and circumferential extension. The associated eigenvalue problem is solved. Results show that the lowest buckling load is associated with the axisymmetric mode and is less than one half the buckling load of an equivalent single-layer shell.


1957 ◽  
Vol 24 (4) ◽  
pp. 553-558
Author(s):  
R. M. Cooper

Abstract The problem of a line load along a segment of a generator of a simply supported circular cylindrical shell is treated using shallow cylindrical shell equations which include the effect of transverse-shear deformation. The line load is first treated as a sinusoidally-varying edge load over the length of the shell, with boundary conditions prescribed along the loaded generator such that the continuity of the shell is maintained. The solution for the problem of a uniform line load over a segment of a generator is obtained from the preceding solution, using the principle of superposition. By means of a numerical example it is shown that the results predicted by the Donnell equations for the stresses are in excellent agreement with those obtained from the system of equations employed here. However, the radial displacement predicted by the Donnell equations is in error by as much as 20 per cent in the range of shell geometry considered.


Sign in / Sign up

Export Citation Format

Share Document