shell equations
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Bence Racskó

Abstract We investigate the variational principle for the gravitational field in the presence of thin shells of completely unconstrained signature (generic shells). Such variational formulations have been given before for shells of timelike and null signatures separately, but so far no unified treatment exists. We identify the shell equation as the natural boundary condition associated with a broken extremal problem along a hypersurface where the metric tensor is allowed to be nondifferentiable. Since the second order nature of the Einstein-Hilbert action makes the boundary value problem associated with the variational formulation ill-defined, regularization schemes need to be introduced. We investigate several such regularization schemes and prove their equivalence. We show that the unified shell equation derived from this variational procedure reproduce past results obtained via distribution theory by Barrabes and Israel for hypersurfaces of fixed causal type and by Mars and Senovilla for generic shells. These results are expected to provide a useful guide to formulating thin shell equations and junction conditions along generic hypersurfaces in modified theories of gravity.


Author(s):  
B. Tomczyk ◽  
M. Gołąbczak ◽  
A. Litawska ◽  
A. Gołąbczak

Abstract Thin linearly elastic Kirchhoff–Love-type circular cylindrical shells of periodically micro-inhomogeneous structure in circumferential and axial directions (biperiodic shells) are investigated. The aim of this contribution is to formulate and discuss a new averaged nonasymptotic model for the analysis of selected stability problems for these shells. This, so-called, general nonasymptotic tolerance model is derived by applying a certain extended version of the known tolerance modelling procedure. Contrary to the starting exact shell equations with highly oscillating, noncontinuous and periodic coefficients, governing equations of the tolerance model have constant coefficients depending also on a cell size. Hence, the model makes it possible to investigate the effect of a microstructure size on the global shell stability (the length-scale effect).


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Albert Ku ◽  
Jieyan Chen

Abstract For the design of tubular conical transitions, the axial, bending, and hoop stresses at the junctions are required. Among the offshore design standards, API RP-2A, ISO 19902, and NORSOK N-004, various equations exist for the same stress quantity which may cause confusions. The quality of these existing stress formulae will be examined in this paper. The tubular conical stress equations used in the offshore industry started from Boardman’s studies in the 1940s. Recently, Lotsberg re-formulated this problem and applied the results to stress concentration factor (SCF) applications. This paper solves the same set of shell equations but the formulations are cast in a different form. This new format allows for an in-depth examination of existing code equations. In addition, the formulation as presented can be used for modifications to gain higher accuracy. Several recommended new stress formulae are provided. It is observed that the existing code provisions’ accuracy quickly deteriorates for cases where plate thickness in tubular and cone differ. The recommended approach is based on theoretical framework of shell mechanics, which better facilitate tubular/cone force balances when compared with existing equations. The sectional relationships among moment, shear, and hoop loads are also treated consistently using shell theory. The resulted improvements make the recommended formulae more accurate than the existing provisions.


2020 ◽  
Vol 7 (1) ◽  
pp. 125-138
Author(s):  
Joseph Nkongho Anyi ◽  
Jean Chills Amba ◽  
Dieudonné Essola ◽  
Ngayihi Abbe Claude Valery ◽  
Merlin Bodol Momha ◽  
...  

AbstractWe present a simple methodology to design curved shell finite elements based on Nzengwa-Tagne’s shell equations. The element has three degrees of freedom at each node. The displacements field of the element satisfies the exact requirement of rigid body modes in a ‘shifted-Lagrange’ polynomial basis. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated on analysis of benchmark problems involving a standard shell with simply supported edges. Examples illustrating the accuracy improvement are included in the analysis. It showed that reasonably accurate results were obtained even when using fewer elements compared to other shell elements. The element is then used to analyse spherical roof structures. The distribution of the various components of deflection is obtained. Furthermore, the effect of introducing concentrated load on a cylindrical clamped ends structure is investigated. It is found that the CSFE3-sh element considered is a very good candidate for the analysis of general shell structures in engineering practice in which the ratio h/R ranges between 1/1000 and 2/5.


Author(s):  
Albert Ku ◽  
Jieyan Chen ◽  
Bernard Cyprian

Abstract This paper consists of two parts. Part one presents a thin-shell analytical solution for calculating the conical transition junction loads. Design equations as contained in the current offshore standards are based on Boardman’s 1940s papers with beam-column type of solutions. Recently, Lotsberg presented a solution based on shell theory, in which both the tubular and the cone were treated with cylindrical shell equations. The new solution as presented in this paper is based on both cylindrical and conical shell theories. Accuracies of these various derivations will be compared and checked against FEM simulations. Part 2 of this paper is concerned with the ultimate capacity equations of conical transitions. This is motivated by the authors’ desire to unify the apparent differences among the API 2A, ISO 19902 and NORSOK design standards. It will be shown that the NORSOK provisions are equivalent to the Tresca yield criterion as derived from shell plasticity theory. API 2A provisions are demonstrated to piecewise-linearly approximate this Tresca yield surface with reasonable consistency. The 2007 edition of ISO 19902 will be shown to be too conservative when compared to these other two design standards.


2020 ◽  
Vol 1599 ◽  
pp. 012040
Author(s):  
A Chierici ◽  
L Chirco ◽  
V Giovacchini ◽  
S Manservisi ◽  
G Santesarti

Author(s):  
Xiang Yu ◽  
Yibin Fu ◽  
Hui-Hui Dai

Based on previous work for the static problem, in this paper, we first derive one form of dynamic finite-strain shell equations for incompressible hyperelastic materials that involve three shell constitutive relations. In order to single out the bending effect as well as to reduce the number of shell constitutive relations, a further refinement is performed, which leads to a refined dynamic finite-strain shell theory with only two shell constitutive relations (deducible from the given three-dimensional (3D) strain energy function) and some new insights are also deduced. By using the weak formulation of the shell equations and the variation of the 3D Lagrange functional, boundary conditions and the two-dimensional shell virtual work principle are derived. As a benchmark problem, we consider the extension and inflation of an arterial segment. The good agreement between the asymptotic solution based on the shell equations and that from the 3D exact one gives verification of the former. The refined shell theory is also applied to study the plane-strain vibrations of a pressurized artery, and the effects of the axial pre-stretch, pressure and fibre angle on the vibration frequencies are investigated in detail.


2020 ◽  
Vol 87 (5) ◽  
Author(s):  
Adam R. Brink ◽  
Allen T. Mathis ◽  
D. Dane Quinn

Abstract The geometrically exact nonlinear deflection of a beamshell is considered here as an extension of the formulation derived by Libai and Simmonds (1998, The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge, UK) to include deformation through the thickness of the beam, as might arise from transverse squeezing loads. In particular, this effect can lead to receding contact for a uniform beamshell resting on a smooth, flat, rigid surface; traditional shell theory cannot adequately such behavior. The formulation is developed from the weak form of the local equations for linear momentum balance, weighted by an appropriate tensor. Different choices for this tensor lead to both the traditional shell equations corresponding to linear and angular momentum balance, as well as the additional higher-order representation for the squeezing deformation. In addition, conjugate strains for the shell forces are derived from the deformation power, as presented by Libai and Simmonds. Finally, the predictions from this approach are compared against predictions from the finite element code abaqus for a uniform beam subject to transverse applied loads. The current geometrically exact shell model correctly predicts the transverse shell force through the thickness of the beamshell and is able to describe problems that admit receding contact.


Sign in / Sign up

Export Citation Format

Share Document