Regulatory Phosphorylation of Purified Pig Liver Pyruvate Kinase

2010 ◽  
Vol 5 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Ilona Faustova ◽  
Aleksei Kuznetsov ◽  
Erkki Juronen ◽  
Mart Loog ◽  
Jaak Järv

AbstractAmong four pyruvate kinase isoenzymes, M1, M2, R and L, only M1 is considered as a nonallosteric enzyme. However, here we show that the non-phosphorylated L-type pyruvate kinase (L-PK) is also a non-allosteric enzyme with respect to its substrate phosphoenolpyruvate (PEP). The allosteric catalytic properties of L-PK are switched on through phosphorylation by cAMP-dependent protein kinase. The non-phosphorylated enzyme was produced by expressing the rat L-PK in E. coli, as the bacterium does not have mammalian-type protein kinases. The resulting tetrameric protein was phosphorylated with a stoichiometric ratio of one mole of phosphate per one L-PK monomer. Activity of the phosphorylated enzyme was allosterically regulated by PEP with the Hill coefficient n=2.5. It was observed that allostery was engaged by phosphorylation of the first subunit in the tetrameric enzyme, while further phosphorylation only modulated this effect. The discovered switching between non-allosteric and allosteric forms of L-PK and the possibility of modulating the allostery by phosphorylation are important for understanding of the interrelationship between allostery and the regulatory phosphorylation in general, and may have implication for further analysis of glycolysis regulation in the liver.


2012 ◽  
Vol 31 (7) ◽  
pp. 592-597 ◽  
Author(s):  
Ilona Faustova ◽  
Mart Loog ◽  
Jaak Järv

1974 ◽  
Vol 139 (3) ◽  
pp. 499-508 ◽  
Author(s):  
Neil Macfarlane ◽  
Stanley Ainsworth

The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg2+ catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K+. The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg2+, pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg2+ ions are involved, though the two Mg2+-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given.


1986 ◽  
Vol 235 (1) ◽  
pp. 103-110 ◽  
Author(s):  
S M Farrow ◽  
C T Jones

During analysis of pyruvate kinase distribution in developing guinea-pig liver it was observed that a substantial proportion of the activity remained associated with the microsomal membrane fraction (‘microsomes’). Although some of this could be removed by washing with sucrose, the majority required detergent treatment for liberation, and even then at least one-half remained attached to the microsomes. Estimates of the contribution of this fraction to total cell pyruvate kinase activity indicated that it was more than 50% of the total, and this is likely to be an underestimate because of the continued latency of the enzyme even in the presence of detergent. The susceptibility of the microsomal enzyme, whether released by detergent or sucrose washing, to inactivation by Triton X-100 suggested it to be different from the cytosolic enzyme, which was stable under such conditions. (The microsomal enzyme required the presence of additional protein, such as bovine serum albumin, to maintain stability.) This view was confirmed by DEAE-cellulose chromatography and particularly isoelectric focusing, where the microsomal enzyme was shown to consist of at least four forms, which were distinctly different from those in the cytosol. Those data and the kinetic properties of the four forms in the membrane fraction indicate that the microsomal pyruvate kinase could consist of four counterparts to the cytosolic isoenzyme forms. These results are discussed in relation to the two possible explanations for the phenomenon (not mutually exclusive): that the more hydrophobic membrane forms are precursors of the cytosolic enzyme and that they may be part of functional glycolytic pathway in the microsomes of developing liver.


1973 ◽  
Vol 354 (2) ◽  
pp. 1473-1489 ◽  
Author(s):  
Carl Kutzbach ◽  
Hanspeter Bischofberger ◽  
Benno Hess ◽  
Hildegard Zimmermann-Telschow
Keyword(s):  

FEBS Letters ◽  
1975 ◽  
Vol 56 (2) ◽  
pp. 288-291 ◽  
Author(s):  
Gunnel Bergström ◽  
Pia Ekman ◽  
Ulla Dahlqvist ◽  
Elisabeth Humble ◽  
Lorentz Engström
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document