regulatory phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 4)

H-INDEX

35
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Carlos Henrique Vieira-Vieira ◽  
Vita Dauksaite ◽  
Michael Gotthardt ◽  
Matthias Selbach

RNA-binding proteins (RBPs) are major regulators of gene expression at the post- transcriptional level. While many posttranslational modification sites in RBPs have been identified, little is known about how these modifications regulate RBP function. Here, we developed quantitative RNA-interactome capture (qRIC) to quantify the fraction of cellular RBPs pulled down with polyadenylated mRNAs. Applying qRIC to HEK293T cells quantified pull-down efficiencies of over 300 RBPs. Combining qRIC with phosphoproteomics allowed us to systematically compare pull-down efficiencies of phosphorylated and non-phosphorylated forms of RBPs. Over hundred phosphorylation events increased or decreased pull-down efficiency compared to the unmodified RBPs and thus have regulatory potential. Our data captures known regulatory phosphorylation sites in ELAVL1, SF3B1 and UPF1 and identifies new potentially regulatory sites. Follow-up experiments on the cardiac splicing regulator RBM20 revealed that multiple phosphorylation sites in the C-terminal disordered region affect nucleo-cytoplasmic localization, association with cytosolic RNA granules and alternative splicing. Together, we show that qRIC is a scalable method to identify functional posttranslational modification sites in RBPs.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A654-A654
Author(s):  
Jewel Banik* ◽  
Juchan Lim* ◽  
Hardy L Linda ◽  
Angela Katherine Odle ◽  
Gwen V Childs ◽  
...  

Abstract The pituitary gland is the major endocrine organ that produces and secretes hormones in response to hypothalamic signals to regulate important processes like growth, reproduction, and stress. The anterior pituitary adapts to metabolic and reproductive needs by exhibiting cellular plasticity, resulting in altered hormone production and secretion. The adipokine, leptin, serves a critical role to couple energy status to pituitary function. We have recently reported that the cell fate determinant, Musashi, functions as a post-transcriptional regulator of target mRNA translation in the mouse pituitary and have speculated that Musashi may modulate pituitary cell plasticity. However, the underlying mechanisms governing such pituitary plasticity are not fully understood. Musashi is an mRNA binding protein that is required for self-renewal, proliferation, and to control the differentiation of stem and progenitor cells. We have recently shown that Musashi is expressed in Sox2+ pituitary stem cells and surprisingly, we also found Musashi expression in all differentiated hormone expressing cell lineages in the adult anterior pituitary. The role of Musashi in these mature differentiated cells is unknown. We have observed that a range of critical pituitary mRNAs, including the lineage specification transcription factors Prop1 and Pou1f1, as well as hormone mRNAs including Tshb, Prl, and Gnrhr, all contain consensus Musashi binding elements (MBEs) in their 3’ untranslated regions (3’ UTRs). Using RNA electrophoretic mobility shift assays (EMSAs) and luciferase mRNA translation reporter assays we show that Musashi binds to these mRNAs and exerts inhibitory control of mRNA translation. Moreover, we determined that leptin stimulation opposes the ability of Musashi to exert translational repression of the Pou1f1 and Gnrhr 3’ UTRs. This de-repression does not require regulatory phosphorylation of Musashi on two conserved C-terminal serine residues. Interestingly in the same cell assay system, Musashi exerts translational activation of the Prop1 3’ UTR. We observed that this translational activation requires Musashi phosphorylation on the two regulatory C-terminal serine residues, consistent with the requirement for regulatory phosphorylation to drive translational activation of Musashi target mRNAs during Xenopus oocyte cell maturation. The distinction between MBEs in 3’ UTRs that exert repression (Pou1f1, Prl, Tshb, and Gnrhr) and the Prop1 3’ UTR that directs translational activation is under investigation. We propose that Musashi acts as a bifunctional regulator of pituitary hormone production and lineage specification and may function to maintain pituitary hormone plasticity in response to changing organismal needs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mardiana Lee ◽  
Geoff Harley ◽  
Marina Katerelos ◽  
Kurt Gleich ◽  
Mitchell A. Sullivan ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Melanie C. MacNicol ◽  
Chad E. Cragle ◽  
F. Kennedy McDaniel ◽  
Linda L. Hardy ◽  
Yan Wang ◽  
...  

2017 ◽  
Author(s):  
Emanuel Gonçalves ◽  
Marco Sciacovelli ◽  
Ana S. H. Costa ◽  
Timothy Isaac Johnson ◽  
Daniel Machado ◽  
...  

AbstractDeregulated signal transduction pathways and energy metabolism are hallmarks of cancer and both play a fundamental role in the process of tumorigenesis. While it is increasingly recognised that signalling and metabolism are highly interconnected, the underpinning mechanisms of their co-regulation are still largely unknown. Here we designed and acquired proteomics, phosphoproteomics, and metabolomics experiments in fumarate hydratase (FH) deficient cells and developed a computational modelling approach to identify putative regulatory phosphorylation-sites of metabolic enzymes. We identified previously reported functionally relevant phosphosites and potentially novel regulatory residues in enzymes of the central carbon metabolism. In particular, we show that pyruvate dehydrogenase (PDHA1) enzymatic activity is inhibited by increased phosphorylation in FH-deficient cells. Our work provides a novel approach to investigate how post-translational modifications of enzymes regulate metabolism and could have important implications for understanding the metabolic transformation of FH-deficient cancers.


2017 ◽  
Vol 174 (2) ◽  
pp. 1012-1027 ◽  
Author(s):  
Sheng Ying ◽  
Allyson T. Hill ◽  
Michal Pyc ◽  
Erin M. Anderson ◽  
Wayne A. Snedden ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Shekhar Srivastava ◽  
Saswati Panda ◽  
Zhai Li ◽  
Stephen R Fuhs ◽  
Tony Hunter ◽  
...  

KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site.


Sign in / Sign up

Export Citation Format

Share Document