scholarly journals Crystal structures of [M(N3)2(phen)2] compounds, M = Mn, Co or Cu and phen = 1,10-phenanthroline

2016 ◽  
Vol 9 (2) ◽  
pp. 152-157
Author(s):  
Petra Masárová ◽  
Jan Moncol

Abstract Crystal structures of the title compounds, [Mn(N3)2(phen)2] (1), [Co(N3)2(phen)2] (2) and [Cu(N3)2(phen)2] · 1.5 H2O (3), have been determined at 100 K. Central atoms of the above-mentioned compounds are coordinated by four pyridine nitrogen donor atoms from two 1,10-phenanthroline molecules and two nitrogen donor atoms of terminally coordinated azide anions, which resulted in a distorted {MN6} octahedral geometry. The π-π stacking interactions, as well as weak C—H∙∙∙N hydrogen bonds, were observed in all three compounds. Moreover, complex 3 revealed also supramolecular chains of the complex and water molecules linked together through O—H∙∙∙N hydrogen bonds.

2014 ◽  
Vol 7 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Danica Čechová ◽  
Alena Martišková ◽  
Jan Moncol

Abstract The crystal structures of the title compounds, [Mn(phen)2Cl2] (I) and [Mn(bipy)2Cl2] (II), have been determined at 150 K. The manganese atoms in both compounds are coordinated by four pyridine nitrogen atoms from two 1,10-phenanthroline or 4,4´-bipyridine ligands and two chloride anions, resulting in a distorted cis-MnN4Cl2 octahedral geometry. Both complexes are connected through C-H・・・Cl hydrogen bonds into frameworks. The π-π stacking interactions are observed in crystal structure of both ones.


2014 ◽  
Vol 70 (2) ◽  
pp. m35-m35
Author(s):  
Jing-Wei Dai ◽  
Zhao-Yang Li ◽  
Osamu Sato

In the title complex, [Fe(NCS)2(C18H18N4)], the FeIIcation is chelated by a tris(2-pyridylmethyl)amine ligand and coordinated by two thiocyanate anions in a distorted N6octahedral geometry. In the crystal, weak C—H...S hydrogen bonds and π–π stacking interactions between parallel pyridine rings of adjacent molecules [centroid–centroid distance = 3.653 (3) Å] link the molecules into a two-dimensional supramolecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.


Author(s):  
Ligia R. Gomes ◽  
John Nicolson Low ◽  
Fernando Cagide ◽  
Fernanda Borges

The title compounds, 6-(2-hydroxybenzyl)-5H-thiazolo[3,2-a]pyrimidin-5-one, C13H8N2O3S, (1), and 6-(2-hydroxybenzyl)-3-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one, C14H10N2O3S, (2), were synthesized when a chromone-3-carboxylic acid, activated with (benzotriazol-1-yloxy)tripyrrolidinylphosphonium hexafluoridophosphate (PyBOP), was reacted with a primary heteromamine. Instead of the expected amidation, the unusual title thiazolopyrimidine-5-one derivatives were obtained serendipitously and a mechanism of formation is proposed. Both compounds present an intramolecular O—H...O hydrogen bond, which generates anS(6) ring. The dihedral angles between the heterocyclic moiety and the 2-hydroxybenzoyl ring are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively. In the crystals, the molecules are linked by weak C—H...O hydrogen bonds and π–π stacking interactions.


2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


2014 ◽  
Vol 70 (4) ◽  
pp. m116-m116
Author(s):  
Ye-Nan Wang ◽  
Wen-Wen Dong

In the title compound, [Zn(C11H7N6)2(H2O)2], the ZnIIcation, located on an inversion center, isN,N′-chelated by two 5-(pyrazin-2-yl)-3-(pyridin-3-yl)-1,2,4-triazolide anions and is further coordinated by two water molecules in a distorted N4O2octahedral geometry. In the anionic ligand, the pyrazine and pyridine rings are twisted with respect to the central triazole ring by 5.77 (10) and 11.54 (10)°, respectively. In the crystal, classical O—H...N and weak C—H...O hydrogen bonds and π–π stacking interactions between aromatic rings [the centroid–centroid distances between triazole and pyrazine rings, and between triazole and pyridine rings are 3.623 (2) and 3.852 (2) Å, respectively] connect the molecules into a three-dimensional supramolecular architecture.


Author(s):  
Jamie R. Kerr ◽  
Laurent Trembleau ◽  
John M. D. Storey ◽  
James L. Wardell ◽  
William T. A. Harrison

We describe the syntheses and crystal structures of two indole derivatives, namely 6-isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole, C19H20N2O2, (I), and 2-(4-methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole, C23H20N2O3, (II); the latter crystallizes with two molecules (AandB) with similar conformations (r.m.s. overlay fit = 0.139 Å) in the asymmetric unit. Despite the presence of O atoms as potential acceptors for classical hydrogen bonds, the dominant intermolecular interaction in each crystal is an N—H...π bond, which generates chains in (I) andA+AandB+Binversion dimers in (II). A different aromatic ring acts as the acceptor in each case. The packing is consolidated by C—H...π interactions in each case but aromatic π–π stacking interactions are absent.


Author(s):  
Songwuit Chanthee ◽  
Wikorn Punyain ◽  
Supawadee Namuangrak ◽  
Kittipong Chainok

The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2N,N′)tetracyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2N,N′)di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2N:N′)(ethylenediamine-κ2N,N′)cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2′-bipy)(CN)4]−units (2,2′-bipy is 2,2′-bipyridine) are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to theabplane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure withR44(8) andR66(12) graph-set ring motifs, while the disordered [N(CH3)4]+cations lie above and below the water chains, and the packing is stabilized by weak C—H...O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional networkviaO—H...O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy)(CN)4]−building blocks, forming anR44(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2′-bipy)(CN)4Cd(en)2]}nlayer structure (en is ethylenediamine) extending parallel to (010) and constructed from {[Fe(2,2′-bipy)(CN)4Cd(en)]}nchains interlinked by bridging en ligands at the Cd atoms. Classical O—H...N and N—H...O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connectedviaπ–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.


2014 ◽  
Vol 70 (5) ◽  
pp. o573-o573 ◽  
Author(s):  
Jing-Wei Dai ◽  
Zhao-Yang Li ◽  
Osamu Sato

In the title compound, C12H6N2O2·C2H5OH, the molecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, molecules are linked by O—H...N and weak C—H...O hydrogen bonds, forming supramolecular chains propagating along [110]. π–π stacking interactions are observed between the pyridine rings of neighbouring chains, the centroid–centroid separations being 3.6226 (11) and 3.7543 (11) Å.


Author(s):  
E. Mesto ◽  
E. Quaranta

The crystal structures of 8-phenoxycarbonyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride, C16H21N2O2+·Cl−, (I), and 8-methoxycarbonyl-1,8-diazabicyclo[5.4.0]undec-7-enium chloride monohydrate, C11H19N2O2+·Cl−·H2O, (II), recently reported by Carafa, Mesto & Quaranta [Eur. J. Org. Chem.(2011), pp. 2458–2465], are analysed and discussed with a focus on crystal interaction assembly. Both compounds crystallize in the space groupP21/c. The crystal packings are characterized by dimers linked through π–π stacking interactions and intermolecular nonclassical hydrogen bonds, respectively. Additional intermolecular C—H...Cl interactions [in (I) and (II)] and classical O—H...Cl hydrogen bonds [in (II)] are also evident and contribute to generating three-dimensional hydrogen-bonded networks.


Author(s):  
Igor Elkin ◽  
Thierry Maris ◽  
Alexandre Melkoumov ◽  
Patrice Hildgen ◽  
Xavier Banquy ◽  
...  

In the title compound, C17H15N3O3, the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azobenzene segment, which adopts a configuration close to planar. In the crystal, molecules are oriented pairwise by (2-oxopyrrolidin-3-yl)oxy moieties at an angle of 76.257 (3)°, linked by hydrogen bonds and π-stacking interactions, forming zigzag supramolecular chains parallel to [010] further linked via additional C—H...π interactions.


Sign in / Sign up

Export Citation Format

Share Document