When is M
0,n
(ℙ1,1) a Mori dream space?
Abstract The moduli space M ¯ 0, n ( ℙ 1 , 1 ) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$ of n-pointed stable maps is a Mori dream space whenever the moduli space M ¯ 0 , n + 3 of ( n + 3 ) ${{\bar{M}}_{0,n+3}}\; \text{of} \;(n+3)$ pointed rational curves is, and M ¯ 0 , n ( ℙ 1 , 1 ) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$ is a log Fano variety for n ≤ 5.