scholarly journals Multi-objective analysis of Polish domestic power system development from point of view of unmanned factories. A cybernetic issue

2016 ◽  
Vol 65 (3) ◽  
pp. 541-558
Author(s):  
Jerzy Tchórzewski

Abstract The paper contains selected results of research on the Domestic Power System (DPS) as an unmanned factory. Models of the DPS system of the MISO type, obtained as a result of identification for 14 inputs and 4 outputs were presented. Particular attention was given to the identification and the assessment of the DPS development based on the systems and control theory. The obtained models of the DPS development were analyzed and discussed. The studies were obtained model of the development of the DPS, and on the basis of is knowledge of the structural and parametrical changes of system development. The model can be used to analyze the design and development of the system from the point of view of the growth of internal organization system and the transition to higher levels of control.

2016 ◽  
Vol 43 (3) ◽  
pp. 1514-1530 ◽  
Author(s):  
Todd Pawlicki ◽  
Aubrey Samost ◽  
Derek W. Brown ◽  
Ryan P. Manger ◽  
Gwe-Ya Kim ◽  
...  

Author(s):  
Sujay D. Kadam ◽  
Utsav Shah ◽  
Alrick D’Souza ◽  
Prajwal Gowdru Shanthamurthy ◽  
Nidhish Raj ◽  
...  

Abstract This paper introduces the swirling pendulum, a two-link, two degree-of-freedom mechanism which is under-actuated and has an unusual non-planar coupling with axis of rotation of the two links being perpendicular to each other. The swirling pendulum mechanism, while being simple to mathematically represent and easy to physically construct, exhibits several properties like loss of inertial coupling, loss of relative degree, multiple stable and unstable equilibrium points. These properties are unique as well as interesting from dynamics and controls point of view which make the swirling pendulum an excellent test-bed for testing various ideas in control and demonstrating several notions associated with systems and control theory. In this paper, we discuss the modeling of the swirling pendulum mechanism based on Lagrange’s equation along with an analysis related to equilibrium points and their stability. We also present simulation results for regulatory as well as tracking control tasks through simulations on a non-linear model using control methods like LQR, lead compensator and system inversion-based control to demonstrate the utility of the proposed mechanism in the area of systems, control and dynamics. Furthermore, we also discuss experimental results for controls applied on a real-time hardware setup.


Sign in / Sign up

Export Citation Format

Share Document