present simulation
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 55)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Rajkumar Santra ◽  
V. G. Vamaravalli ◽  
Ankur Roy ◽  
Balaram Dey ◽  
Subinit Roy

The energy loss behavior of fission fragments (FFs) from [Formula: see text]Cf(sf) in thin Mylar [Formula: see text] and Aluminium absorber foils has been revisited. The aim is to investigate the observed change in the well-known asymmetric energy of spontaneous fission of [Formula: see text]Cf as the fragments pass through increasingly thick absorber foils. Two different types of absorbers have been used: one elemental and the other an organic compound. The stopping powers have been determined as a function of energy for three fragment mass groups with average masses having [Formula: see text], 141.8, 125.8 corresponding to light, heavy and symmetric fragments of [Formula: see text]Cf. The energy loss data have been compared with the predictions of SRIM 2013 code. The best representations of the data have been achieved using the effective Z correction term in the stopping power relation from the classical Bohr theory. Using the effective charge ([Formula: see text]) in the stopping power relation in the classical Bohr theory best describes the stopping power data. Spectrum shape parameters, subsequently, have been extracted from the energy spectra of FFs for different foil thicknesses. The effective charge ([Formula: see text]) correction term determined from the stopping power data is then used in the simulation for the absorber thickness dependence of the shape parameters of the energy spectrum. The present simulation results are compared with the TRIM prediction. The trends of the absorber thickness dependence of the spectrum shape parameters, for both Mylar and Aluminium, are well reproduced with the present simulation.


2021 ◽  
Vol 16 (4) ◽  
pp. 273-276
Author(s):  
Bernard F. Lamond ◽  
Luckny Zephyr

Simple estimators were given in (Kachiashvili & Topchishvili, 2016) for the lower and upper limits of an irregular right-angled triangular distribution together with convenient formulas for removing their bias. We argue here that the smallest observation is not a maximum likelihood estimator (MLE) of the lower limit and we present a procedure for computing an MLE of this parameter. We show that the MLE is strictly smaller than the smallest observation and we give some bounds that are useful in a numerical solution procedure. We also present simulation results to assess the bias and variance of the MLE.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Gen Li ◽  
Xiande Fang

Due to the influence of hypergravity that has a significant impact on the performance of heat exchanger in aircraft, which is crucial for electronic equipment on the plane and life safeties of pilots and passengers, a numerical study is conducted using Fluent 20R2 software to investigate boiling flow patterns under different gravity levels and directions. In this study, the thermophysical properties of nanofluids are analyzed, and select the most suitable theoretical model of thermal conductivity, viscosity, and surface tension for present simulations. Choose the grid structure of 122,116 after independence check for grid. The VOF approach is employed for present simulation, and the standard κ − ε turbulence model with nonequilibrium wall function is used. The UDFs for mass and energy source terms and thermophysical properties of nanofluid are developed for calculating the HTC of nanofluid. There are three different gravity directions with gravity levels from 1 g to 9 g. The results show that the flow pattern becomes the stratified flow with the gravity levels increasing when the hypergravity direction is perpendicular to the flow direction, and the HTCs decrease with the increment of gravity levels. The vapor-phase transform to circular when the hypergravity direction is the same as the flow direction, and the HTCs of the second half of the tube are decreasing with the increasing gravity levels. On the contrary, the vapor phase is elongated when the hypergravity direction is opposite to the flow direction, and the HTCs show the enhanced tendency.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1626
Author(s):  
Alexandra Piryatinska ◽  
Boris Darkhovsky

We consider a retrospective change-point detection problem for multidimensional time series of arbitrary nature (in particular, panel data). Change-points are the moments at which the changes in generating mechanism occur. Our method is based on the new theory of ϵ-complexity of individual continuous vector functions and is model-free. We present simulation results confirming the effectiveness of the method.


2021 ◽  
Vol 2021 (4) ◽  
pp. 41-52
Author(s):  
Nobuyuki Tsuboi ◽  
A. Koichi Hayashi ◽  
Yoshikazu Tamauchi ◽  
Takashi Kodama

Abstract The Artificial Thickened Flame (ATF) method, which involves artificially increasing the flame thickness so as to simulate with a coarse grid resolution, is applied to reduce the computational cost of predicting the Deflagration to Detonation Transition (DDT) in a tube with repeated obstacles. While simulation results depended on the parameter N (the number of grid points in laminar flame thickness), it was found that N values of more than 10 may be excessive. The results show that the chosen simulation method predicts the flame speed as compared to a reference experiment and captures the detail of the strong ignitions near the corner between the obstacle and the sidewall. The present simulation also captures the wrinkle flame front structure during the acceleration of flame.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Wayne M. Getz ◽  
Richard Salter ◽  
Ludovica Luisa Vissat ◽  
James S. Koopman ◽  
Carl P. Simon

We present methods for building a Java Runtime-Alterable-Model Platform (RAMP) of complex dynamical systems. We illustrate our methods by building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an individual-based model that includes adaptive contact rates, pathogen genetic drift, waning and cross-immunity. Besides allowing parameter values, process descriptions and scriptable runtime drivers to be easily modified during simulations, our RAMP can used within R-Studio and other computational platforms. Process descriptions that can be runtime altered within our SEIR RAMP include pathogen variant-dependent host shedding, environmental persistence, host transmission and within-host pathogen mutation and replication. They also include adaptive social distancing and adaptive application of vaccination rates and variant-valency of vaccines. We present simulation results using parameter values and process descriptions relevant to the current COVID-19 pandemic. Our results suggest that if waning immunity outpaces vaccination rates, then vaccination rollouts may fail to contain the most transmissible variants, particularly if vaccine valencies are not adapted to deal with escape mutations. Our SEIR RAMP is designed for easy use by others. More generally, our RAMP concept facilitates construction of highly flexible complex systems models of all types, which can then be easily shared as stand-alone application programs.


2021 ◽  
pp. 1471082X2110439
Author(s):  
Katherine R. McLaughlin

In sampling designs that utilize peer recruitment, the sampling process is partially unknown and must be modelled to make inference about the population and estimate standard outcomes like prevalence. We develop a Bayesian model for the recruitment process for respondent-driven sampling (RDS), a network sampling methodology used worldwide to sample hidden populations that are not reachable by conventional sampling techniques, including those at high risk for HIV/AIDS. Current models for the RDS sampling process typically assume that recruitment occurs randomly given the population social network, but this is likely untrue in practice. To model preferential selection on covariates, we develop a sequential two-sided rational choice framework, which allows generative probabilistic network models to be created for the RDS sampling process. In the rational choice framework, members of the population make recruitment and participation choices based on observable nodal and dyadic covariates to maximize their utility given constraints. Inference is made about recruitment preferences given the observed recruitment chain in a Bayesian framework by incorporating the latent utilities and sampling from the joint posterior distribution via Markov chain Monte Carlo. We present simulation results and apply the model to an RDS study of Francophone migrants in Rabat, Morocco.


2021 ◽  
Author(s):  
Carolina Cuesta-Lazaro ◽  
Arnau Quera-Bofarull ◽  
Joseph Aylett-Bullock ◽  
Bryan N. Lawrence ◽  
Kevin Fong ◽  
...  

With high levels of the Delta variant of COVID-19 circulating in England during September 2021, schools are set to reopen with few school-based non-pharmaceutical interventions (NPIs). In this paper, we present simulation results obtained from the individual-based model, JUNE, for school opening after a prior vaccination campaign using an optimistic set of assumptions about vaccine efficacy and the likelihood of prior-reinfection. We take a scenario-based approach to modelling potential interventions to assess relative changes rather than real-world forecasts. Specifically, we assess the effects of vaccinating those aged 16-17, those aged 12-17, and not vaccinating children at all relative to only vaccinating the adult population. Vaccinating children in the 12-15 age group would have had a significant impact on the course of the epidemic, saving thousands of lives overall in these simulations. In the absence of such a vaccination campaign our simulations show there could still be a significant positive impact on the epidemic (fewer cases, fewer deaths) by continuing NPI strategies in schools. Our analysis suggests that the best results are likely derived from a combination of vaccinations and NPIs.


2021 ◽  
Author(s):  
Anirban Sinha ◽  
Anik Sarker ◽  
Nilanjan Chakraborty

Abstract In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. Scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2041
Author(s):  
Jin Ni ◽  
Bangyi Yu ◽  
Peng Wu

In recent years, the incoming sediments from upstream of the Huai River have continuously decreased. The relationship between flow and sediment has significantly changed. Therefore, the erosion and deposition characteristics of the river could be affected. To investigate this interaction between flow and sediment, the present study was conducted using the Wanglin section in the middle reach of the Huai River as the study site. A 1D hydrodynamic model was developed and validated using field data. Data from 1985–2014 were used as a continuous series while data from 2004–2014 were used as a repetitive series. The sediment variation and distribution processes at different locations were discussed. It was found that the river channel displayed several notable characteristics. In the flow direction, the channel had frontal erosion and backward deposition. The variation rate was relatively slow. With reduced sediment, the overall deposition at the Wanglin section was significantly mitigated. Future recommendations are provided based on the present simulation for flood mitigation along the Huai River.


Sign in / Sign up

Export Citation Format

Share Document