scholarly journals Determination Of The Position Of The Optoelectronic Gimbal Using MEMS Sensors

2015 ◽  
Vol 36 (1) ◽  
pp. 139-146
Author(s):  
Justyna Sokołowska ◽  
Janusz Błaszczyk

AbstractThe paper describes the use of MinIMU-9 v3 sensors to determine changes in the position of a cheap, stabilised optoelectronic gimbal for unmanned aircraft systems. The sensors calibration process, the influence of temperature changes on their readings, and recommendations that should be considered during assembly were presented.

2014 ◽  
Vol 629 ◽  
pp. 202-207 ◽  
Author(s):  
Jarrow Sarson-Lawrence ◽  
Roberto Sabatini ◽  
Reece Clothier ◽  
Alessandro Gardi

One of the key challenges of designing low-cost Unmanned Aircraft Systems (UAS) is to ensure acceptable and certifiable reliability factors for the adopted Commercial-off-the-Shelf (COTS) components since their reliability is often not quantified. In this paper, the experimental results obtained for quantifying the reliability of mini Unmanned Aircraft (UA) servomotors (by recording their time-to-failure on a defined set of test runs) are presented. The Weibull prediction model is adopted for quantitative analysis and the associated key mathematical models. The methodology adopted for performing the reliability analysis including the test bench setup used for the experiments is described. The results indicate a level of reliability expected for low-cost servos. Such servos could be used for low-risk UAS operations (e.g. small UA operating over sparsely populated regions) and where the economics of the business case permitted higher loss rates.


2018 ◽  
Vol 11 (3) ◽  
pp. 1833-1849 ◽  
Author(s):  
Martin Kunz ◽  
Jost V. Lavric ◽  
Christoph Gerbig ◽  
Pieter Tans ◽  
Don Neff ◽  
...  

Abstract. Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol−1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.


2011 ◽  
Vol 42 (6) ◽  
pp. 801-815 ◽  
Author(s):  
Boris Sergeevich Alyoshin ◽  
Valeriy Leonidovich Sukhanov ◽  
Vladimir Mikhaylovich Shibaev

2021 ◽  
Author(s):  
Krishna Muvva ◽  
Justin M. Bradley ◽  
Marilyn Wolf ◽  
Taylor Johnson

Sign in / Sign up

Export Citation Format

Share Document