scholarly journals Supervisory Fault Tolerant Control of the GTM UAV Using LPV Methods

2015 ◽  
Vol 25 (1) ◽  
pp. 117-131 ◽  
Author(s):  
Tamás Péni ◽  
Bálint Vanek ◽  
Zoltán Szabó ◽  
József Bokor

Abstract A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available on the aircraft. When the fault cannot be managed at the actuator/sensor level, the reconfiguration process has access to the baseline controller. Based on the LPV control framework, this is done by introducing fault-specific scheduling parameters. The baseline controller is designed to provide an acceptable performance level along all fault scenarios coded in these scheduling variables. The decision on which reconfiguration level has to be initiated in response to a fault is determined by a supervisor unit. The method is demonstrated on a full six-degrees-of-freedom nonlinear simulation model of the GTM UAV.

2017 ◽  
Vol 27 (4) ◽  
pp. 749-761 ◽  
Author(s):  
Xin Qi ◽  
Didier Theilliol ◽  
Yuqing He ◽  
Jianda Han

Abstract In this paper, a control framework including active fault-tolerant control (FTC) and reference redesign is developed subject to actuator stuck failures under input saturations. FTC synthesis and reference redesign approaches are proposed to guarantee post-fault system safety and reference reachability. Then, these features are analyzed under both actuator stuck failures and constraints before fault-tolerant controller switches. As the main contribution, actuator stuck failures and constraints are unified so that they can be easily considered simultaneously. By means of transforming stuck failures into actuator constraints, the post-fault system can be regarded as an equivalent system with only asymmetrical actuator constraints. Thus, methods against actuator saturations can be used to guarantee regional stability and produce the stability region. Based on this region, stuck compensation is analyzed. Specifically, an unstable open-loop system is considered, which is more challenging. Furthermore, the method is extended to a set-point tracking problem where the reachability of the original reference can be evaluated. Then, a new optimal reference will be computed for the post-fault system if the original one is unreachable. Finally, simulation examples are shown to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document