scholarly journals The control of drilling vibrations: A coupled PDE-ODE modeling approach

2016 ◽  
Vol 26 (2) ◽  
pp. 335-349 ◽  
Author(s):  
Belem Saldivar ◽  
Sabine Mondié ◽  
Juan Carlos Ávila Vilchis

Abstract The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE) through a nonlinear function describing the rock-bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics. The proposal of a Lyapunov-Krasovskii functional provides stability conditions stated in terms of the solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs). Numerical simulations illustrate the efficiency of the obtained control laws.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bowen Du ◽  
Dianfu Ma

This paper investigates the synchronization of complex dynamical networks with coupling delays and external disturbances by applying local feedback injections to a small fraction of nodes in the whole network. Based onH∞control theory, some delay-independent and -dependent synchronization criteria with a prescribedH∞disturbances attenuation index are derived for such controlled networks in terms of linear matrix inequalities (LMIs), which guarantee that by placing a small number of feedback controllers on some nodes, the whole network can be pinned to reach network synchronization. A simulation example is included to validate the theoretical results.


2021 ◽  
Author(s):  
Jorge Ibarra ◽  
Jesus Alonso Diaz ◽  
Raymundo Marquez ◽  
Miguel Bernal

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Xin Wang

Abstract A discrete-time-coupled state-dependent Riccati equation (CSDRE) control strategy is structured in this paper for synthesizing state feedback controllers satisfying the combined nonlinear quadratic regulator (NLQR) and H∞ robust control performance objectives. Under smoothness assumptions, the nonlinear plant dynamics can be formulated into state-dependent coefficient form through direct parameterization. By solving a pair of coupled state-dependent Riccati equations, the optimal stabilizing solutions can achieve inherent stability, nonlinear quadratic optimality, and H∞ disturbance attenuation performance. The established two-player Nash's game theory is utilized for developing both of the finite and infinite time optimal control laws. Furuta swing-up pendulum, a representative nonholonomic underactuated nonlinear system, is stabilized in real-time for validating the robustness and potential of proposed approach in mechatronics applications.


2017 ◽  
Vol 27 (4) ◽  
pp. 575-594 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová

AbstractThe paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.


2000 ◽  
Vol 6 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Eric F. Mulder ◽  
Mayuresh V. Kothare ◽  
Manfred Morari

Sign in / Sign up

Export Citation Format

Share Document