Almost Periodic Solutions of Monotone Second-Order Differential Equations

2011 ◽  
Vol 11 (3) ◽  
Author(s):  
Moez Ayachi ◽  
Joël Blot ◽  
Philippe Cieutat

AbstractWe give sufficient conditions for the existence of almost periodic solutions of the secondorder differential equationu′′(t) = f (u(t)) + e(t)on a Hilbert space H, where the vector field f : H → H is monotone, continuous and the forcing term e : ℝ → H is almost periodic. Notably, we state a result of existence and uniqueness of the Besicovitch almost periodic solution, then we approximate this solution by a sequence of Bohr almost periodic solutions.

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Nguyen Thanh Lan

For the differential equation , on a Hilbert space , we find the necessary and sufficient conditions that the above-mentioned equation has a unique almost periodic solution. Some applications are also given.


2019 ◽  
Vol 6 (1) ◽  
pp. 35-56
Author(s):  
◽  
P. Cieutat ◽  
L. Lhachimi

AbstractWe give sufficient conditions ensuring the existence and uniqueness of pseudo almost periodic solution of the vectorial Liénard ’s equation.


2001 ◽  
Vol 25 (12) ◽  
pp. 787-801 ◽  
Author(s):  
Chuanyi Zhang

Using ergodicity of functions, we prove the existence and uniqueness of (asymptotically) almost periodic solution for some nonlinear differential equations. As a consequence, we generalize a Massera’s result. A counterexample is given to show that the ergodic condition cannot be dropped.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Yongzhi Liao ◽  
Tianwei Zhang

We discuss a discrete mutualism model with variable delays of the formsN1(n+1)=N1(n)exp{r1(n)[(K1(n)+α1(n)N2(n-μ2(n)))/1+N2(n-μ2(n)))-N1(n-ν1(n))]},N2(n+1)=N2(n)exp{r2(n)[(K2(n)+α2(n)N1(n-μ1(n)))/(1+N1(n-μ1(n)))-N2(n-ν2(n))]}. By means of an almost periodic functional hull theory, sufficient conditions are established for the existence and uniqueness of globally attractive almost periodic solution to the previous system. Our results complement and extend some scientific work in recent years. Finally, some examples and numerical simulations are given to illustrate the effectiveness of our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Min Xu ◽  
Zengji Du ◽  
Kaige Zhuang

A class of neural networks system with neutral delays is investigated. The existence and uniqueness of almost periodic solution for the system are obtained by using fixed point theorem; we extend some results in the references.


1974 ◽  
Vol 18 (4) ◽  
pp. 385-387
Author(s):  
Aribindi Satyanarayan Rao ◽  
Walter Hengartner

AbstractIf a linear operator A in a Banach space satisfies certain conditions, then the spectrum of any almost periodic solution of the differential equation u′ = Au + f is shown to be identical with the spectrum of f, where f is a Stepanov almost periodic function.


2007 ◽  
Vol 50 (1) ◽  
pp. 229-249 ◽  
Author(s):  
Yonghui Xia ◽  
Jinde Cao

AbstractBy using Lebesgue’s dominated convergence theorem and constructing a suitable Lyapunov functional, we study the following almost-periodic Lotka–Volterra model with $M$ predators and $N$ prey of the integro-differential equations\begin{alignat*}{2} \dot{x}_i(t)\amp=x_i(t)\biggl[b_i(t)-a_{ii}(t)x_i(t)-\sum_{k=1,k\neq i}^{N}a_{ik}(t)\int_{-\infty}^tH_{ik}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma\\ \amp\hskip45mm-\sum_{l=1}^{M}c_{il}(t)\int_{-\infty}^tK_{il}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad i\amp=1,2,\dots,N,\\ \dot{y}_j(t)\amp=y_j(t)\biggl[-r_j(t)-e_{jj}(t)y_j(t) +\sum_{k=1}^{N}d_{jk}(t)\int_{-\infty}^tP_{jk}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma \\ \amp\hskip45mm-\sum_{l=1,l\neq j}^{M} e_{jl}(t)\int_{-\infty}^tQ_{jl}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad j\amp=1,2,\dots,M. \end{alignat*}Some sufficient conditions are obtained for the existence of a unique almost-periodic solution of this model. Several examples show that the obtained criteria are new, general and easily verifiable.


2017 ◽  
Vol 50 (1) ◽  
pp. 320-329
Author(s):  
Halis Can Koyuncuoglu ◽  
Murat Adıvar

Abstract We study the existence of an almost periodic solution of discrete Volterra systems by means of fixed point theory. Using discrete variant of exponential dichotomy, we provide sufficient conditions for the existence of an almost periodic solution. Hence, we provide an alternative solution for the open problem proposed in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Yongkun Li ◽  
Chao Wang

We first introduce the concept of admitting an exponential dichotomy to a class of linear dynamic equations on time scales and study the existence and uniqueness of almost periodic solution and its expression form to this class of linear dynamic equations on time scales. Then, as an application, using these concepts and results, we establish sufficient conditions for the existence and exponential stability of almost periodic solution to a class of Hopfield neural networks with delays. Finally, two examples and numerical simulations given to illustrate our results are plausible and meaningful.


2018 ◽  
Vol 5 (1) ◽  
pp. 127-137
Author(s):  
Khalil Ezzinbi ◽  
Samir Fatajou ◽  
Fatima Zohra Elamrani

AbstractIn thiswork,we provide sufficient conditions ensuring the existence and uniqueness of an Eberlein weakly almost periodic solutions for some semilinear integro-differential equations with infinite delay in Banach spaces. For illustration, we provide an example arising in viscoelasticity theory.


Sign in / Sign up

Export Citation Format

Share Document