fractional laplace operator
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. M. Serag ◽  
Abd-Allah Hyder ◽  
M. El-Badawy

AbstractIn this work, the elliptic $2\times 2$ 2 × 2 cooperative systems involving fractional Laplace operators are studied. Due to the nonlocality of the fractional Laplace operator, we reformulate the problem into a local problem by an extension problem. Then, the existence and uniqueness of the weak solution for these systems are proved. Hence, the existence and optimality conditions are deduced.


Author(s):  
Qi Li ◽  
Shuangjie Peng

This paper deals with the following fractional elliptic equation with critical exponent \[ \begin{cases} \displaystyle (-\Delta )^{s}u=u_{+}^{2_{s}^{*}-1}+\lambda u-\bar{\nu}\varphi_{1}, & \text{in}\ \Omega,\\ \displaystyle u=0, & \text{in}\ {{\mathfrak R}}^{N}\backslash \Omega, \end{cases}\] where $\lambda$ , $\bar {\nu }\in {{\mathfrak R}}$ , $s\in (0,1)$ , $2^{*}_{s}=({2N}/{N-2s})\,(N>2s)$ , $(-\Delta )^{s}$ is the fractional Laplace operator, $\Omega \subset {{\mathfrak R}}^{N}$ is a bounded domain with smooth boundary and $\varphi _{1}$ is the first positive eigenfunction of the fractional Laplace under the condition $u=0$ in ${{\mathfrak R}}^{N}\setminus \Omega$ . Under suitable conditions on $\lambda$ and $\bar {\nu }$ and using a Lyapunov-Schmidt reduction method, we prove the fractional version of the Lazer-McKenna conjecture which says that the equation above has infinitely many solutions as $|\bar \nu | \to \infty$ .


Author(s):  
Tiffany Frugé Jones ◽  
Evdokiya Georgieva Kostadinova ◽  
Joshua Lee Padgett ◽  
Qin Sheng

2021 ◽  
Vol 52 ◽  
Author(s):  
Guangyu Zhao

We study a variety of basic properties of the principal eigenvalue of a perturbed fractional Laplace operator and weakly coupled cooperative systems involving fractional Laplace operators. Our work extends a number of well-known properties regarding the principal eigenvalues of linear second-order elliptic operators with Dirichlet boundary condition to perturbed fractional Laplace operators. The establish results are also utilized to investigate the spatio-temporary dynamics of population models.


2021 ◽  
Vol 7 (3) ◽  
pp. 4199-4210
Author(s):  
CaiDan LaMao ◽  
◽  
Shuibo Huang ◽  
Qiaoyu Tian ◽  
Canyun Huang ◽  
...  

<abstract><p>In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), &amp; x\in \Omega , \\ u(x)\ge 0,~~~~~ &amp; x\in \Omega , \\ u(x)=0,~~~~~ &amp; x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $\end{document} </tex-math></disp-formula></p> <p>where $ 0 &lt; s &lt; 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.</p></abstract>


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tingting Guan ◽  
Guotao Wang

In this paper, the authors consider a IBVP for the time-space fractional PDE with the fractional conformable derivative and the fractional Laplace operator. A fractional conformable extremum principle is presented and proved. Based on the extremum principle, a maximum principle for the fractional conformable Laplace system is established. Furthermore, the maximum principle is applied to the linear space-time fractional Laplace conformable differential system to obtain a new comparison theorem. Besides that, the uniqueness and continuous dependence of the solution of the above system are also proved.


Author(s):  
Li Wang ◽  
Tao Han ◽  
Kun Cheng ◽  
Jixiu Wang

AbstractIn this paper, we study the existence of ground state solutions for the following fractional Kirchhoff–Schrödinger–Poisson systems with general nonlinearities:$$\left\{\begin{array}{ll}\left(a+b{\left[u\right]}_{s}^{2}\right)\,{\left(-{\Delta}\right)}^{s}u+u+\phi \left(x\right)u=\left({\vert x\vert }^{-\mu }\ast F\left(u\right)\right)f\left(u\right)\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \\ {\left(-{\Delta}\right)}^{t}\phi \left(x\right)={u}^{2}\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \end{array}\right.$$where$${\left[u\right]}_{s}^{2}={\int }_{{\mathrm{&#x211d;}}^{3}}{\vert {\left(-{\Delta}\right)}^{\frac{s}{2}}u\vert }^{2}\,\mathrm{d}x={\iint }_{{\mathrm{&#x211d;}}^{3}{\times}{\mathrm{&#x211d;}}^{3}}\frac{{\vert u\left(x\right)-u\left(y\right)\vert }^{2}}{{\vert x-y\vert }^{3+2s}}\,\mathrm{d}x\mathrm{d}y\,\text{,}$$$s,t\in \left(0,1\right)$ with $2t+4s{ >}3,0{< }\mu {< }3-2t,$$f:{\mathrm{&#x211d;}}^{3}{\times}\mathrm{&#x211d;}\to \mathrm{&#x211d;}$ satisfies a Carathéodory condition and (−Δ)s is the fractional Laplace operator. There are two novelties of the present paper. First, the nonlocal term in the equation sets an obstacle that the bounded Cerami sequences could not converge. Second, the nonlinear term f does not satisfy the Ambrosetti–Rabinowitz growth condition and monotony assumption. Thus, the Nehari manifold method does not work anymore in our setting. In order to overcome these difficulties, we use the Pohozǎev type manifold to obtain the existence of ground state solution of Pohozǎev type for the above system.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
M. K. Hamdani ◽  
J. Zuo ◽  
N. T. Chung ◽  
D. D. Repovš

Abstract We are interested in the existence of solutions for the following fractional $p(x,\cdot )$ p ( x , ⋅ ) -Kirchhoff-type problem: $$ \textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases} $$ { M ( ∫ Ω × Ω | u ( x ) − u ( y ) | p ( x , y ) p ( x , y ) | x − y | N + p ( x , y ) s d x d y ) ( − Δ ) p ( x , ⋅ ) s u = f ( x , u ) , x ∈ Ω , u = 0 , x ∈ ∂ Ω , where $\Omega \subset \mathbb{R}^{N}$ Ω ⊂ R N , $N\geq 2$ N ≥ 2 is a bounded smooth domain, $s\in (0,1)$ s ∈ ( 0 , 1 ) , $p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$ p : Ω ‾ × Ω ‾ → ( 1 , ∞ ) , $(-\Delta )^{s}_{p(x,\cdot )}$ ( − Δ ) p ( x , ⋅ ) s denotes the $p(x,\cdot )$ p ( x , ⋅ ) -fractional Laplace operator, $M: [0,\infty ) \to [0, \infty )$ M : [ 0 , ∞ ) → [ 0 , ∞ ) , and $f: \Omega \times \mathbb{R} \to \mathbb{R}$ f : Ω × R → R are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo–Benci–Fortunato (Nonlinear Anal. 7(9):981–1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti–Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.


Sign in / Sign up

Export Citation Format

Share Document