scholarly journals Simulation and Analysis of Particle Filter Based Slam System

2018 ◽  
Vol 25 (1) ◽  
pp. 137-153
Author(s):  
Piotr Kaniewski ◽  
Paweł Słowak

AbstractThe paper describes a problem and an algorithm for simultaneous localization and mapping (SLAM) for an unmanned aerial vehicle (UAV). The algorithm developed by the authors estimates the flight trajectory and builds a map of the terrain below the UAV. As a tool for estimating the UAV position and other parameters of flight, a particle filter was applied. The proposed algorithm was tested and analyzed by simulations and the paper presents a simulator developed by the authors and used for SLAM testing purposes. Chosen simulation results, including maps and UAV trajectories constructed by the SLAM algorithm are included in the paper.

2013 ◽  
Vol 765-767 ◽  
pp. 1932-1935
Author(s):  
Zeng Xiang Yang ◽  
Sai Jin

To decrease the uncertainty of simultaneous localization and mapping of UAV, and at the same time, to increase the speed of searching the unknown environment at which UAV locates, an active SLAM trajectory programming algorithm is proposed based on optimal control. Therefore, UAV SLAM is tackled as a combined optimization problem, considering the precision of UAV location and mapping integrity. Based on the simplified UAV plane motion model, this algorithm is simulated and tested by comparing with the random SLAM algorithm. Simulation results show that this algorithm is effective.


2011 ◽  
Vol 23 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Taro Suzuki ◽  
◽  
Yoshiharu Amano ◽  
Takumi Hashizume ◽  
Shinji Suzuki ◽  
...  

This paper describes a Simultaneous Localization And Mapping (SLAM) algorithm using a monocular camera for a small Unmanned Aerial Vehicle (UAV). A small UAV has attracted the attention for effective means of the collecting aerial information. However, there are few practical applications due to its small payloads for the 3D measurement. We propose extended Kalman filter SLAM to increase UAV position and attitude data and to construct 3D terrain maps using a small monocular camera. We propose 3D measurement based on Scale-Invariant Feature Transform (SIFT) triangulation features extracted from captured images. Field-experiment results show that our proposal effectively estimates position and attitude of the UAV and construct the 3D terrain map.


2015 ◽  
Vol 781 ◽  
pp. 555-558
Author(s):  
Surasak Nasuriwong ◽  
Peerapol Yuwapoositanon

In this paper, we explore a method for posterior elimination for fast computation of the look-ahead Rao-Blackwellised Particle Filtering (Fast la-RBPF) algorithm for the simultaneous localization and mapping (SLAM) problem in the probabilistic robotics framework. In the case when a lot of SLAM states need to be estimated, large posterior states associated with the correct state may be outnumbered by multiple non-zero smaller posteriors. We show that by masking the low posterior weight states with a Gaussian kernel prior to weight selection the accuracy of the la-RBPF SLAM algorithm can be improved. Simulation results reveal that integrated with the proposed method the fast la-RBPF SLAM performance is enhanced over both the existing RBPF SLAM and the unmodified la-RBPF SLAM algorithms.


2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


Sign in / Sign up

Export Citation Format

Share Document