Probabilistic model-based fault diagnosis for the cavities of the European XFEL

2021 ◽  
Vol 69 (6) ◽  
pp. 538-549
Author(s):  
Ayla Nawaz ◽  
Christian Herzog né Hoffmann ◽  
Jan Graßhoff ◽  
Sven Pfeiffer ◽  
Gerwald Lichtenberg ◽  
...  

Abstract The European X-ray Free Electron Laser (EuXFEL) is a complex system with many interconnected components and sensor measurements. We use factor graphs to systematically design a probabilistic fault diagnosis method for its cavity system. This approach is expandable to further subsystems and considers uncertainties from measurements and modeling. After representing a model of the cavity system in the factor graph framework, we infer marginal distributions, e. g., of the fault classes using tabulated message-passing definitions. The emerging fault diagnosis method consists of an unscented Kalman filter-based residual generator and an evaluation of the residuals using a Gaussian mixture model. We include message-passing definitions for the training of the Gaussian Mixture Model from noisy data using the expectation-maximization algorithm.

2021 ◽  
Vol 87 (9) ◽  
pp. 615-630
Author(s):  
Longjie Ye ◽  
Ka Zhang ◽  
Wen Xiao ◽  
Yehua Sheng ◽  
Dong Su ◽  
...  

This paper proposes a Gaussian mixture model of a ground filtering method based on hierarchical curvature constraints. Firstly, the thin plate spline function is iteratively applied to interpolate the reference surface. Secondly, gradually changing grid size and curvature threshold are used to construct hierarchical constraints. Finally, an adaptive height difference classifier based on the Gaussian mixture model is proposed. Using the latent variables obtained by the expectation-maximization algorithm, the posterior probability of each point is computed. As a result, ground and objects can be marked separately according to the calculated possibility. 15 data samples provided by the International Society for Photogrammetry and Remote Sensing are used to verify the proposed method, which is also compared with eight classical filtering algorithms. Experimental results demonstrate that the average total errors and average Cohen's kappa coefficient of the proposed method are 6.91% and 80.9%, respectively. In general, it has better performance in areas with terrain discontinuities and bridges.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pengyue Guo ◽  
Zhijing Zhang ◽  
Lingling Shi ◽  
Yujun Liu

Purpose The purpose of this study was to solve the problem of pose measurement of various parts for a precision assembly system. Design/methodology/approach A novel alignment method which can achieve high-precision pose measurement of microparts based on monocular microvision system was developed. To obtain the precise pose of parts, an area-based contour point set extraction algorithm and a point set registration algorithm were developed. First, the part positioning problem was transformed into a probability-based two-dimensional point set rigid registration problem. Then, a Gaussian mixture model was fitted to the template point set, and the contour point set is represented by hierarchical data. The maximum likelihood estimate and expectation-maximization algorithm were used to estimate the transformation parameters of the two point sets. Findings The method has been validated for accelerometer assembly on a customized assembly platform through experiments. The results reveal that the proposed method can complete letter-pedestal assembly and the swing piece-basal part assembly with a minimum gap of 10 µm. In addition, the experiments reveal that the proposed method has better robustness to noise and disturbance. Originality/value Owing to its good accuracy and robustness for the pose measurement of complex parts, this method can be easily deployed to assembly system.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1283
Author(s):  
Qiuhui Xu ◽  
Shenfang Yuan ◽  
Tianxiang Huang

Guided Wave (GW)-based crack monitoring method as a promising method has been widely studied, as this method is sensitive to small cracks and can cover a wide monitoring range. Online crack quantification is difficult as the initiation and growth of crack are affected by various uncertainties. In addition, crack-sensitive GW features are influenced by time-varying conditions which further increase the difficulty in crack quantification. Considering these uncertainties, the Gaussian mixture model (GMM) is studied to model the probability distribution of GW features. To further improve the accuracy and stability of crack quantification under uncertainties, this paper proposes a multi-dimensional uniform initialization GMM. First, the multi-channel GW features are integrated to increase the accuracy of crack quantification, as GW features from different channels have different sensitivity to cracks. Then, the uniform initialization method is adopted to provide more stable initial parameters in the expectation-maximization algorithm. In addition, the relationship between the probability migration index of GMMs and crack length is calibrated with fatigue tests on prior specimens. Finally, the proposed method is applied for online crack quantification on the notched specimen of an aircraft spar with complex fan-shaped cracks under uncertainty.


Sign in / Sign up

Export Citation Format

Share Document