Transverse Kähler holonomy in Sasaki Geometry and S-Stability

2021 ◽  
Vol 8 (1) ◽  
pp. 336-353
Author(s):  
Charles P. Boyer ◽  
Hongnian Huang ◽  
Christina W. Tønnesen-Friedman

Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b 1(M) and the basic Hodge number h 0,2 B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n 1) × U(n 2)) as well as the fiber join operation preserve S-stability.

2020 ◽  
Vol 20 (4) ◽  
pp. 463-472
Author(s):  
Salvatore de Candia ◽  
Marian Ioan Munteanu

AbstractWe investigate slant surfaces in the almost Hermitian manifold 𝕊3 × ℝ, considering the position of the Reeb vector field ξ of the Sasakian structure on 𝕊3 with respect to the surfaces. We examine two cases: ξ normal or tangent to the surfaces. In the first case, we prove that every surface is totally real. In the second case, we characterize and locally describe complex surfaces. Finally, we completely classify non-complex slant surfaces, giving explicit examples.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


2018 ◽  
Vol 61 (3) ◽  
pp. 543-552
Author(s):  
Imsoon Jeong ◽  
Juan de Dios Pérez ◽  
Young Jin Suh ◽  
Changhwa Woo

AbstractOn a real hypersurface M in a complex two-plane Grassmannian G2() we have the Lie derivation and a differential operator of order one associated with the generalized Tanaka–Webster connection . We give a classification of real hypersurfaces M on G2() satisfying , where ξ is the Reeb vector field on M and S the Ricci tensor of M.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


2003 ◽  
Vol 2003 (27) ◽  
pp. 1731-1738 ◽  
Author(s):  
Dragoş Cioroboiu

Chen (1993) established a sharp inequality for the sectional curvature of a submanifold in Riemannian space forms in terms of the scalar curvature and squared mean curvature. The notion of a semislant submanifold of a Sasakian manifold was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez (1999). In the present paper, we establish Chen inequalities for semislant submanifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector fieldξ.


2018 ◽  
Vol 62 (4) ◽  
pp. 912-922 ◽  
Author(s):  
Yaning Wang

AbstractIn this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.


Sign in / Sign up

Export Citation Format

Share Document