constant length
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 66)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Katrina R. Whitlow ◽  
Callum F. Ross ◽  
Nicholas J. Gidmark ◽  
J. D. Laurence-Chasen ◽  
Mark W. Westneat

Many fishes use substantial cranial kinesis to rapidly increase buccal cavity volume, pulling prey into the mouth via suction feeding. Living polypterids are a key lineage for understanding the evolution and biomechanics of suction feeding due to their phylogenetic position and unique morphology. Polypterus bichir have fewer mobile cranial elements compared to teleosts (e.g., immobile [pre]maxillae) but successfully generate suction through dorsal, ventral, and lateral oral cavity expansion. However, the relative contributions of these motions to suction feeding success have not been quantified. Additionally, extensive body musculature and lack of opercular jaw opening linkages make P. bichir of interest for examining the role of cranial vs. axial muscles in driving mandibular depression. Here we analyze the kinematics of buccal expansion during suction feeding in P. bichir using X-Ray Reconstruction of Moving Morphology (XROMM) and quantify the contributions of skeletal elements to oral cavity volume expansion and prey capture. Mouth gape peaks early in the strike, followed by maximum cleithral and ceratohyal rotations, and finally by opercular and suspensorial abductions, maintaining the anterior-to-posterior movement of water. Using a new method of quantifying bones’ relative contributions to volume change (RCVC) we demonstrate that ceratohyal kinematics are the most significant drivers of oral cavity volume change. All measured cranial bone motions, except abduction of the suspensorium, are correlated with prey motion. Lastly, cleithral retraction is largely concurrent with ceratohyal retraction and jaw depression while the sternohyoideus maintains constant length, suggesting a central role of the axial muscles, cleithrum, and ceratohyal in ventral expansion.


Author(s):  
B. S. Yesmagambetov ◽  

In telemetry systems, using irreversible data compression, several message generation methods can be used. In the channel output packet, there may be several code words defining its composition. They can be combined and arranged in a strictly defined sequence. Such a data packet is a constant or variable length code combination, wherein the constant length of the packet is generated in the case of a predetermined and unchanged amount of information at the data output interval, and the variable is otherwise generated. The channel data packet can then be treated as a single whole: provide it with address information about the source of the message, information about the time interval at which the packet was formed, to bind significant samples to time, additional check symbols and codes to increase interference immunity of transmission, or to form a packet structure in the same way. Address, time and synchronization information in the literature is called overhead. The need to transmit overhead information reduces the efficiency of the transceiver systems. Therefore, the problem of reducing the volume of service information is extremely urgent.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8064
Author(s):  
Godiya Yakubu ◽  
Paweł Olejnik ◽  
Jan Awrejcewicz

Due to the long-term problem of electricity and potable water in most developing and undeveloped countries, predominantly rural areas, a novelty of the pendulum water pump, which uses a vertically excited parametric pendulum with variable-length using a sinusoidal excitation as a vibrating machine, is presented. With this, more oscillations can be achieved, reducing human effort further and having high output than the existing pendulum water pump with the conventional pendulum. The pendulum, lever, and piston assembly are modeled by a separate dynamical system and then joined into the many degrees-of-freedom dynamical systems. The present work includes friction while studying the system dynamics and then simulated to verify the system’s harmonic response. The study showed the effect of the pendulum length variability on the whole system’s performance. The vertically excited parametric pendulum with variable length in the system is established, giving faster and longer oscillations than the pendulum with constant length. Hence, more and richer dynamics are achieved. A quasi-periodicity behavior is noticed in the system even after 50 s of simulation time; this can be compensated when a regular external forcing is applied. Furthermore, the lever and piston oscillations show a transient behavior before it finally reaches a stable behavior.


2021 ◽  
Vol 24 (3) ◽  
pp. 207-221
Author(s):  
Kamil Khadiev ◽  
Vladislav Remidovskii

We study algorithms for solving the problem of assembling a text (long string) from a dictionary (a sequence of small strings). The problem has an application in bioinformatics and has a connection with the sequence assembly method for reconstructing a long deoxyribonucleic-acid (DNA) sequence from small fragments. The problem is assembling a string t of length n from strings s1,...,sm. Firstly, we provide a classical (randomized) algorithm with running time Õ(nL0.5 + L) where L is the sum of lengths of s1,...,sm. Secondly, we provide a quantum algorithm with running time Õ(nL0.25 + √mL). Thirdly, we show the lower bound for a classical (randomized or deterministic) algorithm that is Ω(n+L). So, we obtain the quadratic quantum speed-up with respect to the parameter L; and our quantum algorithm have smaller running time comparing to any classical (randomized or deterministic) algorithm in the case of non-constant length of strings in the dictionary.


Author(s):  
Zakharchenko N.V., Gadzhiev M.M. Zakharchenko N.V., Gadzhiev M.M.

It is indicated that due to changes in the restrictions on the duration of the basic element, which is the basis for the construction of the signal structure, an increase in the channel capacity was obtained by reducing the energy distance between the signal structures. In this case, the information parameter in these structures is not the parameters of the current or voltage, but the time. The work uses timer signal structures, which are synthesized, as well as positional signals from segments not less than the Nyquist element, but not multiples of it. It is this principle of formation that significantly increases the number of synthesized code structures in comparison with positional coding. It is noted that the information content of any event is determined by the number of its states, and the entropy and the probability of the occurrence of a particular event are interrelated values. In addition, timer signaling constructs allow synthesizing ensembles with a large information content in comparison with positional coding. Keywords: basic element, Nyquist element, information parameter, entropy, probability of occurrence, information segment, message, timer signal structure.


2021 ◽  
Vol 8 (3) ◽  
pp. 1-17
Author(s):  
Faith Ellen ◽  
Barun Gorain ◽  
Avery Miller ◽  
Andrzej Pelc

Broadcast is one of the fundamental network communication primitives. One node of a network, called the s ource, has a message that has to be learned by all other nodes. We consider broadcast in radio networks, modeled as simple undirected connected graphs with a distinguished source. Nodes communicate in synchronous rounds. In each round, a node can either transmit a message to all its neighbours, or stay silent and listen. At the receiving end, a node v hears a message from a neighbour w in a given round if v listens in this round and if w is its only neighbour that transmits in this round. If more than one neighbour of a node v transmits in a given round, we say that a c ollision occurs at v . We do not assume collision detection: in case of a collision, node v does not hear anything (except the background noise that it also hears when no neighbour transmits). We are interested in the feasibility of deterministic broadcast in radio networks. If nodes of the network do not have any labels, deterministic broadcast is impossible even in the four-cycle. On the other hand, if all nodes have distinct labels, then broadcast can be carried out, e.g., in a round-robin fashion, and hence O (log n )-bit labels are sufficient for this task in n -node networks. In fact, O (log Δ)-bit labels, where Δ is the maximum degree, are enough to broadcast successfully. Hence, it is natural to ask if very short labels are sufficient for broadcast. Our main result is a positive answer to this question. We show that every radio network can be labeled using 2 bits in such a way that broadcast can be accomplished by some universal deterministic algorithm that does not know the network topology nor any bound on its size. Moreover, at the expense of an extra bit in the labels, we can get the following additional strong property of our algorithm: there exists a common round in which all nodes know that broadcast has been completed. Finally, we show that 3-bit labels are also sufficient to solve both versions of broadcast in the case where it is not known a priori which node is the source.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhuo Yan ◽  
Shengli Guo ◽  
Shujie Yuan ◽  
Chaomin Mu

In this article, the effect of a chamber’s geometrical parameters on suppressing gas explosion propagation was studied. Three rectangular chambers were used in the study, with a constant length of 0.5 m, a constant height of 0.2 m, and a variable width of 0.3 m, 0.5 m, and 0.8 m; each chamber was installed in a pipeline system for experimental research. The experimental results showed that when the chamber length and height were fixed at 0.5 m and 0.2 m, respectively, the suppression effect of the chamber on the explosion shockwave improves with the increase in the chamber width; when the chamber width increases to 0.8 m, the chamber has suppressive effect on explosion shockwave propagation. It was also found that the suppression effect of the chambers on the explosion flame improves with the increase in the chamber width; when the width of the chamber is 0.5 m, the chamber effectively suppresses explosion flames. Based on the experimental results, a numerical model was established to simulate the suppression effect of five types of chambers with a length, width, and height of 0.5 m × 0.3 m × 0.2 m, 0.3 m × 0.5 m × 0.2 m, 0.5 m × 0.5 m × 0.2 m, 0.5 m × 0.8 m × 0.2 m, and 0.8 m × 0.5 m × 0.2 m, respectively. The numerical simulation results indicated that when the chamber length and height are constant at 0.5 m and 0.2 m, respectively, the suppressive effect of the chamber on the shockwave improves as the chamber width increases; when the chamber width increases to 0.8 m, the shockwave overpressure at the chamber outlet is attenuated by 10.61%, indicating that the chamber suppresses the propagation of explosion shockwave, which is consistent with the experimental results obtained in the study. It was also found that when the chamber width and height were constant at 0.5 m and 0.2 m, respectively, as the chamber length increases, the overpressure increases first and then weakens. When the chamber length increases to 0.8 m, the overpressure at the chamber outlet is attenuated by −14.16%, indicating that the chamber is not able to suppress the propagation of explosion shockwave. Finally, a numerical simulation of the propagation process of a methane-air mixture and explosion flames in different chambers was performed to analyse the effect of chamber geometrical parameters on explosion suppression effect.


2021 ◽  
Author(s):  
Manuel Lera-Ramirez ◽  
Francois Nedelec ◽  
Phong T Tran

During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.


2021 ◽  
Vol 58 (4) ◽  
pp. 335-356
Author(s):  
Sebastian Jakobi ◽  
Katja Meckel ◽  
Carlo Mereghetti ◽  
Beatrice Palano

AbstractWe consider the notion of a constant length queue automaton—i.e., a traditional queue automaton with a built-in constant limit on the length of its queue—as a formalism for representing regular languages. We show that the descriptional power of constant length queue automata greatly outperforms that of traditional finite state automata, of constant height pushdown automata, and of straight line programs for regular expressions, by providing optimal exponential and double-exponential size gaps. Moreover, we prove that constant height pushdown automata can be simulated by constant length queue automata paying only by a linear size increase, and that removing nondeterminism in constant length queue automata requires an optimal exponential size blow-up, against the optimal double-exponential cost for determinizing constant height pushdown automata. Finally, we investigate the size cost of implementing Boolean language operations on deterministic and nondeterministic constant length queue automata.


Sign in / Sign up

Export Citation Format

Share Document