Almost contact metric manifolds whose Reeb vector field is a harmonic section

2012 ◽  
Vol 138 (1-2) ◽  
pp. 102-126 ◽  
Author(s):  
Domenico Perrone
2007 ◽  
Vol 76 (2) ◽  
pp. 269-283 ◽  
Author(s):  
D. Perrone ◽  
L. Vergori

In this paper we obtain criteria of stability for ηEinstein k-contact manifolds, for Sasakian manifolds of constant ϕ-sectional curvature and for 3-dimensional Sasakian manifolds. Moreover, we show that a stable compact Einstein contact metric manifold M is Sasakian if and only if the Reeb vector field ξ minimises the energy functional. In particular, the Reeb vector field of a Sasakian manifold M of constant ϕ-holomorphic sectional curvature +1 minimises the energy functional if and only if M is not simply connected.


2010 ◽  
Vol 21 (09) ◽  
pp. 1189-1218 ◽  
Author(s):  
DOMENICO PERRONE

Let (M, g) be a Riemannian manifold and T1 M its unit tangent sphere bundle. Minimality and harmonicity of unit vector fields have been extensively studied by considering on T1M the Sasaki metric [Formula: see text]. This metric, and other well-known Riemannian metrics on T1 M, are particular examples of Riemannian natural metrics. In this paper we equip T1 M with a Riemannian natural metric [Formula: see text] and in particular with a natural contact metric structure. Then, we study the minimality for Reeb vector fields of contact metric manifolds and of quasi-umbilical hypersurfaces of a Kähler manifold. Several explicit examples are given. In particular, the Reeb vector field ξ of a K-contact manifold is minimal for any [Formula: see text] that belongs to a family depending on two parameters of metrics of the Kaluza–Klein type. Next, we show that the Reeb vector field ξ of a K-contact manifold defines a harmonic map [Formula: see text] for any Riemannian natural metric [Formula: see text]. Besides this, if the Reeb vector ξ of an almost contact metric manifold is a CR map then the induced almost CR structure on M is strictly pseudoconvex and ξ is a pseudo-Hermitian map; if in addition ξ is geodesic then [Formula: see text] is a harmonic map. Moreover, the Reeb vector field ξ of a contact metric manifold is a CR map iff ξ is Killing and [Formula: see text] is a special metric of the Kaluza–Klein type. Finally, in the final section, we obtain that there is a family of strictly pseudoconvex CR structures on T1S2n+1 depending on one parameter, for which a Hopf vector field ξ determines a pseudo-harmonic map (in the sense of Barletta–Dragomir–Urakawa [8]) from S2n+1 to T1S2n+1.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].


2018 ◽  
Vol 61 (3) ◽  
pp. 543-552
Author(s):  
Imsoon Jeong ◽  
Juan de Dios Pérez ◽  
Young Jin Suh ◽  
Changhwa Woo

AbstractOn a real hypersurface M in a complex two-plane Grassmannian G2() we have the Lie derivation and a differential operator of order one associated with the generalized Tanaka–Webster connection . We give a classification of real hypersurfaces M on G2() satisfying , where ξ is the Reeb vector field on M and S the Ricci tensor of M.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


2003 ◽  
Vol 2003 (27) ◽  
pp. 1731-1738 ◽  
Author(s):  
Dragoş Cioroboiu

Chen (1993) established a sharp inequality for the sectional curvature of a submanifold in Riemannian space forms in terms of the scalar curvature and squared mean curvature. The notion of a semislant submanifold of a Sasakian manifold was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez (1999). In the present paper, we establish Chen inequalities for semislant submanifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector fieldξ.


Sign in / Sign up

Export Citation Format

Share Document