scholarly journals Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space

Author(s):  
Lan-Hsuan Huang ◽  
Dan A. Lee ◽  
Christina Sormani

AbstractThe rigidity of the Positive Mass Theorem states that the only complete asymptotically flat manifold of nonnegative scalar curvature and




2019 ◽  
Vol 30 (13) ◽  
pp. 1940006
Author(s):  
Pengzi Miao ◽  
Naqing Xie

We construct asymptotically flat, scalar flat extensions of Bartnik data [Formula: see text], where [Formula: see text] is a metric of positive Gauss curvature on a two-sphere [Formula: see text], and [Formula: see text] is a function that is either positive or identically zero on [Formula: see text], such that the mass of the extension can be made arbitrarily close to the half area radius of [Formula: see text]. In the case of [Formula: see text], the result gives an analog of a theorem of Mantoulidis and Schoen [On the Bartnik mass of apparent horizons, Class. Quantum Grav. 32(20) (2015) 205002, 16 pp.], but with extensions that have vanishing scalar curvature. In the context of initial data sets in general relativity, the result produces asymptotically flat, time-symmetric, vacuum initial data with an apparent horizon [Formula: see text], for any metric [Formula: see text] with positive Gauss curvature, such that the mass of the initial data is arbitrarily close to the optimal value in the Riemannian Penrose inequality. The method we use is the Shi–Tam type metric construction from [Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62(1) (2002) 79–125] and a refined Shi–Tam monotonicity, found by the first named author in [On a localized Riemannian Penrose inequality, Commun. Math. Phys. 292(1) (2009) 271–284].



Author(s):  
Michael Eichmair ◽  
Gregory J. Galloway ◽  
Abraão Mendes

AbstractWe prove several rigidity results related to the spacetime positive mass theorem. A key step is to show that certain marginally outer trapped surfaces are weakly outermost. As a special case, our results include a rigidity result for Riemannian manifolds with a lower bound on their scalar curvature.







2021 ◽  
Vol 74 (4) ◽  
pp. 865-905
Author(s):  
Otis Chodosh ◽  
Michael Eichmair ◽  
Yuguang Shi ◽  
Haobin Yu


2020 ◽  
Vol 2020 (767) ◽  
pp. 161-191
Author(s):  
Otis Chodosh ◽  
Michael Eichmair

AbstractWe extend the Lyapunov–Schmidt analysis of outlying stable constant mean curvature spheres in the work of S. Brendle and the second-named author [S. Brendle and M. Eichmair, Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94 2013, 3, 387–407] to the “far-off-center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence and non-existence results for large stable constant mean curvature spheres that depend delicately on the behavior of scalar curvature at infinity.



Author(s):  
Thomas Hasanis

AbstractWe consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.





Sign in / Sign up

Export Citation Format

Share Document